A strategy for achieving high-performance single layer polymer photodetectors through dark current reduction using PMMA additives

IF 2.7 4区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Organic Electronics Pub Date : 2024-10-18 DOI:10.1016/j.orgel.2024.107149
Guozhen Bai , Luwen Ran , Xinmu Chen, Zilong Wang, Zhidong Lou, Yanbing Hou, Feng Teng, Yufeng Hu
{"title":"A strategy for achieving high-performance single layer polymer photodetectors through dark current reduction using PMMA additives","authors":"Guozhen Bai ,&nbsp;Luwen Ran ,&nbsp;Xinmu Chen,&nbsp;Zilong Wang,&nbsp;Zhidong Lou,&nbsp;Yanbing Hou,&nbsp;Feng Teng,&nbsp;Yufeng Hu","doi":"10.1016/j.orgel.2024.107149","DOIUrl":null,"url":null,"abstract":"<div><div>Suppressing dark current density is crucial for optimizing the performance of organic photodetectors (PDs), particularly in terms of detectivity (D∗) and linear dynamic range (LDR). Organic PDs often utilize the bulk heterojunction structure of organic solar cells to significantly increase photocurrent. However, unlike solar cells, which are unaffected by dark current, photodetectors' performance is substantially limited by it. The interconnected network of bulk heterojunctions leads to a noticeable increase in dark current, thus degrading device performance. Typically, reducing dark current involves adding a modification layer or using multilayer planar heterojunctions, which effectively reduce dark current but often delay response speed and complicate manufacturing. This study presents an alternative approach by incorporating a small concentration of PMMA into single-layer polymer photodetectors, significantly reducing dark current without affecting photocurrent. For this single-layer polymer PD, an ultra-low dark current density of 1.25 × 10<sup>−8</sup> A/cm<sup>2</sup>, a high D<sub>sh</sub>∗ of 2.74 × 10<sup>12</sup> Jones, an LDR of 120.5 dB, and a fast response time with 1.6 μs were achieved. The capacitance-voltage (C-V), electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM), and atomic force microscopy (AFM) measurements revealed that the PMMA additive reduces internal defects, increases bulk resistance, optimizes phase separation, and enhances carrier transport efficiency. The improved device performances are attributed to a more efficient vertical arrangement of the donor-acceptor interface and carrier channels, thus reducing carrier recombination loss. These findings offer a new direction for fabricating high-performance single-layer photodetectors.</div></div>","PeriodicalId":399,"journal":{"name":"Organic Electronics","volume":"136 ","pages":"Article 107149"},"PeriodicalIF":2.7000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Electronics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1566119924001605","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Suppressing dark current density is crucial for optimizing the performance of organic photodetectors (PDs), particularly in terms of detectivity (D∗) and linear dynamic range (LDR). Organic PDs often utilize the bulk heterojunction structure of organic solar cells to significantly increase photocurrent. However, unlike solar cells, which are unaffected by dark current, photodetectors' performance is substantially limited by it. The interconnected network of bulk heterojunctions leads to a noticeable increase in dark current, thus degrading device performance. Typically, reducing dark current involves adding a modification layer or using multilayer planar heterojunctions, which effectively reduce dark current but often delay response speed and complicate manufacturing. This study presents an alternative approach by incorporating a small concentration of PMMA into single-layer polymer photodetectors, significantly reducing dark current without affecting photocurrent. For this single-layer polymer PD, an ultra-low dark current density of 1.25 × 10−8 A/cm2, a high Dsh∗ of 2.74 × 1012 Jones, an LDR of 120.5 dB, and a fast response time with 1.6 μs were achieved. The capacitance-voltage (C-V), electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM), and atomic force microscopy (AFM) measurements revealed that the PMMA additive reduces internal defects, increases bulk resistance, optimizes phase separation, and enhances carrier transport efficiency. The improved device performances are attributed to a more efficient vertical arrangement of the donor-acceptor interface and carrier channels, thus reducing carrier recombination loss. These findings offer a new direction for fabricating high-performance single-layer photodetectors.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用 PMMA 添加剂降低暗电流实现高性能单层聚合物光电探测器的策略
抑制暗电流密度对于优化有机光电探测器(PD)的性能至关重要,尤其是在检测率(D∗)和线性动态范围(LDR)方面。有机光检测器通常利用有机太阳能电池的体异质结结构来显著提高光电流。然而,与不受暗电流影响的太阳能电池不同,光电探测器的性能会受到暗电流的极大限制。体异质结的互连网络会导致暗电流明显增加,从而降低器件性能。通常情况下,降低暗电流需要添加修饰层或使用多层平面异质结,这虽然能有效降低暗电流,但往往会延迟响应速度并使制造复杂化。本研究提出了另一种方法,即在单层聚合物光电探测器中加入小浓度的 PMMA,从而在不影响光电流的情况下显著降低暗电流。这种单层聚合物光电探测器实现了 1.25 × 10-8 A/cm2 的超低暗电流密度、2.74 × 1012 Jones 的高 Dsh∗、120.5 dB 的 LDR 和 1.6 μs 的快速响应时间。电容-电压 (C-V)、电化学阻抗谱 (EIS)、扫描电子显微镜 (SEM) 和原子力显微镜 (AFM) 测量结果表明,PMMA 添加剂减少了内部缺陷,增加了体电阻,优化了相分离,并提高了载流子传输效率。器件性能的提高归功于供体-受体界面和载流子通道更有效的垂直排列,从而减少了载流子的重组损耗。这些发现为制造高性能单层光电探测器提供了新的方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Organic Electronics
Organic Electronics 工程技术-材料科学:综合
CiteScore
6.60
自引率
6.20%
发文量
238
审稿时长
44 days
期刊介绍: Organic Electronics is a journal whose primary interdisciplinary focus is on materials and phenomena related to organic devices such as light emitting diodes, thin film transistors, photovoltaic cells, sensors, memories, etc. Papers suitable for publication in this journal cover such topics as photoconductive and electronic properties of organic materials, thin film structures and characterization in the context of organic devices, charge and exciton transport, organic electronic and optoelectronic devices.
期刊最新文献
High triplet hexahydroacridine derivatives as a host prevent exciton diffusion to adjacent layers in solution processed OLEDs Naphthalene-Arylamine starburst architectures: Novel hole transport materials for enhanced OLED performance Cyclic(amino)(barrelene)carbene metal amide complexes: Synthesis and thermally activated delayed fluorescence Interface modification based on norfloxacin for enhancing the performance of the inverted perovskite solar cells Recent progress in high-performance thermally activated delayed fluorescence exciplexes based on multiple reverse intersystem crossing channels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1