Callistus I. Iheme , Peace M. John , Gift I. Charleswalter , Evangelina O. Ohaeri , Chioma Y. Ezirim , Winifred N. Nsofor , Elias E. Emeka , Chidi U. Igwe , Chinwe S. Alisi
{"title":"Synthesis, characterization, and ameliorative effect of iron oxide nanoparticles on saline-stressed Zea mays","authors":"Callistus I. Iheme , Peace M. John , Gift I. Charleswalter , Evangelina O. Ohaeri , Chioma Y. Ezirim , Winifred N. Nsofor , Elias E. Emeka , Chidi U. Igwe , Chinwe S. Alisi","doi":"10.1016/j.enmm.2024.101016","DOIUrl":null,"url":null,"abstract":"<div><div>High soil salinity induces osmotic and ionic stress that threaten crop production worldwide and affect food security. This study evaluated the ameliorative effects of iron oxide nanoparticles on salinized <em>Zea mays</em>. Iron oxide nanoparticles were synthesized using an aqueous leaf extract of <em>Diodella sarmentosa</em>, and the results of the characterization using Fourier transform infrared (FTIR) spectroscopy, x-ray diffraction (XRD), energy-dispersive x-ray spectroscopy (EDX), transmission electron microscope (TEM), UV–visible spectrophotometer, and scanning electron microscope (SEM) revealed the presence of polydisperse spherical iron oxide nanoparticles (FeONPs) with a light absorption peak at 290 nm, and a size ranging from 3.03 nm to 87.04 nm. Daily foliar application of FeONPs on the salinized <em>Zea mays</em> for 10 days, significantly (p < 0.05) improved the plant’s photosynthetic pigments (total chlorophyl (175.71 %), chlorophyll <em>a</em> (256.34 %), chlorophyll <em>b</em> (77.01 %), carotenoid (39.36 %), root length (9.87 %), and antioxidant enzyme activities, compared to the untreated and bulk FeCl<sub>3</sub>·6H<sub>2</sub>O-treated controls. Since iron is known to promote photosynthetic pigment synthesis, the enhanced photosynthetic indices observed in the FeONPs-treated pot compared to the bulk FeCl<sub>3</sub>·6H<sub>2</sub>O-treated pot, may have resulted from the size-aided absorption of the FeONPs more than FeCl<sub>3</sub>·6H<sub>2</sub>O From the findings, it can be deduced that FeONPs can improve the growth and development of saline-stressed <em>Zea mays</em> by enhancing the activities of the antioxidant enzymes, while improving the photosynthetic pigments of the plant.</div></div>","PeriodicalId":11716,"journal":{"name":"Environmental Nanotechnology, Monitoring and Management","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Nanotechnology, Monitoring and Management","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215153224001041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0
Abstract
High soil salinity induces osmotic and ionic stress that threaten crop production worldwide and affect food security. This study evaluated the ameliorative effects of iron oxide nanoparticles on salinized Zea mays. Iron oxide nanoparticles were synthesized using an aqueous leaf extract of Diodella sarmentosa, and the results of the characterization using Fourier transform infrared (FTIR) spectroscopy, x-ray diffraction (XRD), energy-dispersive x-ray spectroscopy (EDX), transmission electron microscope (TEM), UV–visible spectrophotometer, and scanning electron microscope (SEM) revealed the presence of polydisperse spherical iron oxide nanoparticles (FeONPs) with a light absorption peak at 290 nm, and a size ranging from 3.03 nm to 87.04 nm. Daily foliar application of FeONPs on the salinized Zea mays for 10 days, significantly (p < 0.05) improved the plant’s photosynthetic pigments (total chlorophyl (175.71 %), chlorophyll a (256.34 %), chlorophyll b (77.01 %), carotenoid (39.36 %), root length (9.87 %), and antioxidant enzyme activities, compared to the untreated and bulk FeCl3·6H2O-treated controls. Since iron is known to promote photosynthetic pigment synthesis, the enhanced photosynthetic indices observed in the FeONPs-treated pot compared to the bulk FeCl3·6H2O-treated pot, may have resulted from the size-aided absorption of the FeONPs more than FeCl3·6H2O From the findings, it can be deduced that FeONPs can improve the growth and development of saline-stressed Zea mays by enhancing the activities of the antioxidant enzymes, while improving the photosynthetic pigments of the plant.
期刊介绍:
Environmental Nanotechnology, Monitoring and Management is a journal devoted to the publication of peer reviewed original research on environmental nanotechnologies, monitoring studies and management for water, soil , waste and human health samples. Critical review articles, short communications and scientific policy briefs are also welcome. The journal will include all environmental matrices except air. Nanomaterials were suggested as efficient cost-effective and environmental friendly alternative to existing treatment materials, from the standpoints of both resource conservation and environmental remediation. The journal aims to receive papers in the field of nanotechnology covering; Developments of new nanosorbents for: •Groundwater, drinking water and wastewater treatment •Remediation of contaminated sites •Assessment of novel nanotechnologies including sustainability and life cycle implications Monitoring and Management papers should cover the fields of: •Novel analytical methods applied to environmental and health samples •Fate and transport of pollutants in the environment •Case studies covering environmental monitoring and public health •Water and soil prevention and legislation •Industrial and hazardous waste- legislation, characterisation, management practices, minimization, treatment and disposal •Environmental management and remediation