Guillaume Dujardin , Ingrid Lacroix-Violet , Anthony Nahas
{"title":"A numerical study of vortex nucleation in 2D rotating Bose–Einstein condensates","authors":"Guillaume Dujardin , Ingrid Lacroix-Violet , Anthony Nahas","doi":"10.1016/j.matcom.2024.09.029","DOIUrl":null,"url":null,"abstract":"<div><div>This article implements a numerical method for the minimization under constraints of a discrete energy modelling multicomponents rotating Bose–Einstein condensates in the regime of strong confinement and with rotation. Moreover, this method allows to consider both segregation and coexistence regimes between the components. The method includes a discretization of a continuous energy in space dimension 2 and a gradient algorithm with adaptive time step and projection for the minimization. It is well known that, depending on the regime, the minimizers may display different structures, sometimes with vorticity (from singly quantized vortices, to vortex sheets and giant holes). The goal of this paper is to study numerically the structures of the minimizers. In order to do so, we introduce a numerical algorithm for the computation of the indices of the vortices, as well as an algorithm for the computation of the indices of vortex sheets. Several computations are carried out, to illustrate the efficiency of the method, to cover different physical cases, to validate recent theoretical results as well as to support conjectures. Moreover, we compare this method with an alternative method from the literature.</div></div>","PeriodicalId":49856,"journal":{"name":"Mathematics and Computers in Simulation","volume":"229 ","pages":"Pages 409-434"},"PeriodicalIF":4.4000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics and Computers in Simulation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378475424003847","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
This article implements a numerical method for the minimization under constraints of a discrete energy modelling multicomponents rotating Bose–Einstein condensates in the regime of strong confinement and with rotation. Moreover, this method allows to consider both segregation and coexistence regimes between the components. The method includes a discretization of a continuous energy in space dimension 2 and a gradient algorithm with adaptive time step and projection for the minimization. It is well known that, depending on the regime, the minimizers may display different structures, sometimes with vorticity (from singly quantized vortices, to vortex sheets and giant holes). The goal of this paper is to study numerically the structures of the minimizers. In order to do so, we introduce a numerical algorithm for the computation of the indices of the vortices, as well as an algorithm for the computation of the indices of vortex sheets. Several computations are carried out, to illustrate the efficiency of the method, to cover different physical cases, to validate recent theoretical results as well as to support conjectures. Moreover, we compare this method with an alternative method from the literature.
期刊介绍:
The aim of the journal is to provide an international forum for the dissemination of up-to-date information in the fields of the mathematics and computers, in particular (but not exclusively) as they apply to the dynamics of systems, their simulation and scientific computation in general. Published material ranges from short, concise research papers to more general tutorial articles.
Mathematics and Computers in Simulation, published monthly, is the official organ of IMACS, the International Association for Mathematics and Computers in Simulation (Formerly AICA). This Association, founded in 1955 and legally incorporated in 1956 is a member of FIACC (the Five International Associations Coordinating Committee), together with IFIP, IFAV, IFORS and IMEKO.
Topics covered by the journal include mathematical tools in:
•The foundations of systems modelling
•Numerical analysis and the development of algorithms for simulation
They also include considerations about computer hardware for simulation and about special software and compilers.
The journal also publishes articles concerned with specific applications of modelling and simulation in science and engineering, with relevant applied mathematics, the general philosophy of systems simulation, and their impact on disciplinary and interdisciplinary research.
The journal includes a Book Review section -- and a "News on IMACS" section that contains a Calendar of future Conferences/Events and other information about the Association.