Optimizing beamforming in quaternion signal processing using projected gradient descent algorithm

IF 3.4 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Signal Processing Pub Date : 2024-10-11 DOI:10.1016/j.sigpro.2024.109738
Qiankun Diao , Dongpo Xu , Shuning Sun , Danilo P. Mandic
{"title":"Optimizing beamforming in quaternion signal processing using projected gradient descent algorithm","authors":"Qiankun Diao ,&nbsp;Dongpo Xu ,&nbsp;Shuning Sun ,&nbsp;Danilo P. Mandic","doi":"10.1016/j.sigpro.2024.109738","DOIUrl":null,"url":null,"abstract":"<div><div>Recent advances in quaternion signal processing have drawn attention to the Quaternion Beamforming Problem (QBP). By leveraging appropriate relaxation techniques, QBP can be transformed into a constrained quaternion matrix optimization problem, aiming to develop a simple and effective solution. To this end, this paper first establishes a comprehensive theory of convex optimization for quaternion matrices based on the GHR calculus, covering quadratic upper bounds and projection theorems. In particular, we propose a quaternion projected gradient descent (QPGD) for constrained quaternion matrix optimization problems and prove the convergence of the QPGD algorithms, showing the monotonic decrease of the objective function. The numerical experiments verify the applicability and effectiveness of the QPGD algorithm in solving constrained quaternion matrices least squares problems in Frobenius norm and the quaternion beamforming problem.</div></div>","PeriodicalId":49523,"journal":{"name":"Signal Processing","volume":"227 ","pages":"Article 109738"},"PeriodicalIF":3.4000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016516842400358X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Recent advances in quaternion signal processing have drawn attention to the Quaternion Beamforming Problem (QBP). By leveraging appropriate relaxation techniques, QBP can be transformed into a constrained quaternion matrix optimization problem, aiming to develop a simple and effective solution. To this end, this paper first establishes a comprehensive theory of convex optimization for quaternion matrices based on the GHR calculus, covering quadratic upper bounds and projection theorems. In particular, we propose a quaternion projected gradient descent (QPGD) for constrained quaternion matrix optimization problems and prove the convergence of the QPGD algorithms, showing the monotonic decrease of the objective function. The numerical experiments verify the applicability and effectiveness of the QPGD algorithm in solving constrained quaternion matrices least squares problems in Frobenius norm and the quaternion beamforming problem.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用投影梯度下降算法优化四元数信号处理中的波束成形
四元数信号处理领域的最新进展引起了人们对四元数波束成形问题(Quaternion Beamforming Problem,QBP)的关注。通过利用适当的松弛技术,QBP 可以转化为受约束的四元矩阵优化问题,旨在开发一种简单有效的解决方案。为此,本文首先建立了基于 GHR 微积分的四元矩阵凸优化综合理论,涵盖二次上界和投影定理。特别是,我们提出了针对受约束四元矩阵优化问题的四元投影梯度下降算法(QPGD),并证明了 QPGD 算法的收敛性,显示了目标函数的单调递减。数值实验验证了 QPGD 算法在解决 Frobenius 准则下的受约束四元矩阵最小二乘问题和四元波束成形问题中的适用性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Signal Processing
Signal Processing 工程技术-工程:电子与电气
CiteScore
9.20
自引率
9.10%
发文量
309
审稿时长
41 days
期刊介绍: Signal Processing incorporates all aspects of the theory and practice of signal processing. It features original research work, tutorial and review articles, and accounts of practical developments. It is intended for a rapid dissemination of knowledge and experience to engineers and scientists working in the research, development or practical application of signal processing. Subject areas covered by the journal include: Signal Theory; Stochastic Processes; Detection and Estimation; Spectral Analysis; Filtering; Signal Processing Systems; Software Developments; Image Processing; Pattern Recognition; Optical Signal Processing; Digital Signal Processing; Multi-dimensional Signal Processing; Communication Signal Processing; Biomedical Signal Processing; Geophysical and Astrophysical Signal Processing; Earth Resources Signal Processing; Acoustic and Vibration Signal Processing; Data Processing; Remote Sensing; Signal Processing Technology; Radar Signal Processing; Sonar Signal Processing; Industrial Applications; New Applications.
期刊最新文献
Distributed filtering with time-varying topology: A temporal-difference learning approach in dual games Editorial Board MABDT: Multi-scale attention boosted deformable transformer for remote sensing image dehazing A new method for judging thermal image quality with applications Learning feature-weighted regularization discriminative correlation filters for real-time UAV tracking
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1