Multifunctional adversarial examples: A novel mechanism for authenticatable privacy protection of images

IF 3.4 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Signal Processing Pub Date : 2024-11-28 DOI:10.1016/j.sigpro.2024.109816
Ming Li , Si Wang
{"title":"Multifunctional adversarial examples: A novel mechanism for authenticatable privacy protection of images","authors":"Ming Li ,&nbsp;Si Wang","doi":"10.1016/j.sigpro.2024.109816","DOIUrl":null,"url":null,"abstract":"<div><div>With the rapid development of network technology, more and more images containing personal identity characteristics are being released by users on open network platforms. However, these images are easily collected by malicious users, leading to problems such as privacy leakage, infringement, and tampering, thus harming users’ legitimate interests. Recent studies have found that adversarial examples generated by adding tiny perturbations to an image can mislead image classifiers, causing incorrect classifications. Therefore significant privacy protection against deep neural networks is achieved while the visual quality remains indistinguishable to human eyes. However, these methods cannot protect the authenticity and integrity of the image simultaneously, failing to address infringement and tampering issues, which are also neglectable in the open network platforms. To solve this problem, we propose a novel authentication-enabled privacy protection method. The meaningful information used for authentication, instead of the meaningless perturbations, is embedded into the host image to generate adversarial examples, thereby achieving both authentication and privacy protection simultaneously. This scheme combines attention mechanisms with generative adversarial networks to adaptively select and weight features between different channels, achieving significant improvements in both aggressiveness and authentication capability. Experimental results show that our method outperforms recent similar methods in overall performance.</div></div>","PeriodicalId":49523,"journal":{"name":"Signal Processing","volume":"230 ","pages":"Article 109816"},"PeriodicalIF":3.4000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165168424004365","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

With the rapid development of network technology, more and more images containing personal identity characteristics are being released by users on open network platforms. However, these images are easily collected by malicious users, leading to problems such as privacy leakage, infringement, and tampering, thus harming users’ legitimate interests. Recent studies have found that adversarial examples generated by adding tiny perturbations to an image can mislead image classifiers, causing incorrect classifications. Therefore significant privacy protection against deep neural networks is achieved while the visual quality remains indistinguishable to human eyes. However, these methods cannot protect the authenticity and integrity of the image simultaneously, failing to address infringement and tampering issues, which are also neglectable in the open network platforms. To solve this problem, we propose a novel authentication-enabled privacy protection method. The meaningful information used for authentication, instead of the meaningless perturbations, is embedded into the host image to generate adversarial examples, thereby achieving both authentication and privacy protection simultaneously. This scheme combines attention mechanisms with generative adversarial networks to adaptively select and weight features between different channels, achieving significant improvements in both aggressiveness and authentication capability. Experimental results show that our method outperforms recent similar methods in overall performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Signal Processing
Signal Processing 工程技术-工程:电子与电气
CiteScore
9.20
自引率
9.10%
发文量
309
审稿时长
41 days
期刊介绍: Signal Processing incorporates all aspects of the theory and practice of signal processing. It features original research work, tutorial and review articles, and accounts of practical developments. It is intended for a rapid dissemination of knowledge and experience to engineers and scientists working in the research, development or practical application of signal processing. Subject areas covered by the journal include: Signal Theory; Stochastic Processes; Detection and Estimation; Spectral Analysis; Filtering; Signal Processing Systems; Software Developments; Image Processing; Pattern Recognition; Optical Signal Processing; Digital Signal Processing; Multi-dimensional Signal Processing; Communication Signal Processing; Biomedical Signal Processing; Geophysical and Astrophysical Signal Processing; Earth Resources Signal Processing; Acoustic and Vibration Signal Processing; Data Processing; Remote Sensing; Signal Processing Technology; Radar Signal Processing; Sonar Signal Processing; Industrial Applications; New Applications.
期刊最新文献
Editorial Board Multifunctional adversarial examples: A novel mechanism for authenticatable privacy protection of images A saddlepoint approximation for the smoothed periodogram Progressive Gaussian filtering for nonlinear uncertain systems based on Gaussian process models A privacy-preserving license plate encryption scheme based on an improved YOLOv8 image recognition algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1