Uncovering fantastic synergistic lithium adsorption with manganese-titanium based composite nanospheres: Mild synthesis and molecular dynamics simulation insights

IF 13.1 1区 化学 Q1 Energy Journal of Energy Chemistry Pub Date : 2024-09-21 DOI:10.1016/j.jechem.2024.08.067
{"title":"Uncovering fantastic synergistic lithium adsorption with manganese-titanium based composite nanospheres: Mild synthesis and molecular dynamics simulation insights","authors":"","doi":"10.1016/j.jechem.2024.08.067","DOIUrl":null,"url":null,"abstract":"<div><div>In light of the burgeoning energy technology sector and the ever-growing demand for lithium across diverse industrial domains, conventional lithium extraction methods have been proven inadequate due to their limited production capacity and high operational costs. This work introduces a novel approach to the manganese-titanium based composite HMTO (Mn:Ti=1:4) lithium ion-sieve (LIS) nanospheres, employing lithium acetate dihydrate, manganese carbonate and titanium dioxide P25 as the primary materials. These nanospheres exhibit relatively uniform spherical morphology, narrow size distribution, small average particle size (<em>ca.</em> 55 nm), large specific surface area (43.58 m<sup>2</sup> g<sup>−1</sup>) and high surface O<sup>2−</sup> content (59.01%). When utilized as the adsorbents for Li<sup>+</sup> ions, the HMTO (Mn:Ti=1:4) LIS demonstrates a fast adsorption rate, approaching equilibrium within 6.0 h with an equilibrium adsorption capacity (<em>q</em><sub>e</sub>) of 79.5 mg g<sup>−1</sup> and a maximum adsorption capacity (<em>q</em><sub>m</sub>) of 87.26 mg g<sup>−1</sup> (initial concentration <em>C</em><sub>0</sub>: 1.8 g L<sup>−1</sup>). In addition, the HMTO (Mn:Ti=1:4) also delivers a high lithium extraction from the simulated high magnesium-lithium molar ratio salt lake brine (Mg:Li = 103), achieving a <em>q</em><sub>e</sub> of 33.85 mg g<sup>−1</sup> along with a remarkable selectivity (<span><math><mrow><msubsup><mi>α</mi><mrow><mi>Mg</mi></mrow><mrow><mi>Li</mi></mrow></msubsup><mo>=</mo><mn>2192.76</mn></mrow></math></span>). Particularly, the HMTO (Mn:Ti=1:4) LIS showcases a satisfactory recycling adsorption performance. The adsorption capacity remains at a high level, even that determined after the 5th cycle (55.45 mg g<sup>−1</sup>) surpasses that of the most recently reported adsorbents. Ultimately, the fantastic synergistic lithium adsorption mechanism is deliberately uncovered by leveraging the ion exchange principles and molecular dynamics (MD) simulations.</div></div>","PeriodicalId":15728,"journal":{"name":"Journal of Energy Chemistry","volume":null,"pages":null},"PeriodicalIF":13.1000,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Energy Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095495624006454","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

Abstract

In light of the burgeoning energy technology sector and the ever-growing demand for lithium across diverse industrial domains, conventional lithium extraction methods have been proven inadequate due to their limited production capacity and high operational costs. This work introduces a novel approach to the manganese-titanium based composite HMTO (Mn:Ti=1:4) lithium ion-sieve (LIS) nanospheres, employing lithium acetate dihydrate, manganese carbonate and titanium dioxide P25 as the primary materials. These nanospheres exhibit relatively uniform spherical morphology, narrow size distribution, small average particle size (ca. 55 nm), large specific surface area (43.58 m2 g−1) and high surface O2− content (59.01%). When utilized as the adsorbents for Li+ ions, the HMTO (Mn:Ti=1:4) LIS demonstrates a fast adsorption rate, approaching equilibrium within 6.0 h with an equilibrium adsorption capacity (qe) of 79.5 mg g−1 and a maximum adsorption capacity (qm) of 87.26 mg g−1 (initial concentration C0: 1.8 g L−1). In addition, the HMTO (Mn:Ti=1:4) also delivers a high lithium extraction from the simulated high magnesium-lithium molar ratio salt lake brine (Mg:Li = 103), achieving a qe of 33.85 mg g−1 along with a remarkable selectivity (αMgLi=2192.76). Particularly, the HMTO (Mn:Ti=1:4) LIS showcases a satisfactory recycling adsorption performance. The adsorption capacity remains at a high level, even that determined after the 5th cycle (55.45 mg g−1) surpasses that of the most recently reported adsorbents. Ultimately, the fantastic synergistic lithium adsorption mechanism is deliberately uncovered by leveraging the ion exchange principles and molecular dynamics (MD) simulations.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
揭示锰钛基复合纳米球对锂的奇妙协同吸附:温和合成与分子动力学模拟的启示
鉴于能源技术领域的蓬勃发展以及不同工业领域对锂的需求不断增长,传统的锂提取方法因其生产能力有限和运营成本高昂而被证明是不够的。这项研究采用锰钛复合 HMTO(Mn:Ti=1:4)锂离子筛(LIS)纳米球的新方法,以二水醋酸锂、碳酸锰和二氧化钛 P25 为主要材料。这些纳米球呈现出相对均匀的球形形态,粒度分布窄,平均粒径小(约 55 nm),比表面积大(43.58 m2 g-1),表面 O2- 含量高(59.01%)。当用作 Li+ 离子的吸附剂时,HMTO(Mn:Ti=1:4)LIS 的吸附速率很快,在 6.0 小时内就接近平衡,平衡吸附容量(qe)为 79.5 mg g-1,最大吸附容量(qm)为 87.26 mg g-1(初始浓度 C0:1.8 g L-1)。此外,HMTO(Mn:Ti=1:4)还能从模拟的高镁锂摩尔比盐湖卤水(Mg:Li=103)中萃取出大量锂,qe 达到 33.85 mg g-1,并具有显著的选择性(αMgLi=2192.76)。特别是 HMTO(Mn:Ti=1:4)LIS 的循环吸附性能令人满意。其吸附容量保持在较高水平,甚至在第 5 个循环后测定的容量(55.45 mg g-1)也超过了最新报道的吸附剂。最终,通过利用离子交换原理和分子动力学(MD)模拟,刻意揭示了奇妙的协同锂吸附机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Energy Chemistry
Journal of Energy Chemistry CHEMISTRY, APPLIED-CHEMISTRY, PHYSICAL
CiteScore
19.10
自引率
8.40%
发文量
3631
审稿时长
15 days
期刊介绍: The Journal of Energy Chemistry, the official publication of Science Press and the Dalian Institute of Chemical Physics, Chinese Academy of Sciences, serves as a platform for reporting creative research and innovative applications in energy chemistry. It mainly reports on creative researches and innovative applications of chemical conversions of fossil energy, carbon dioxide, electrochemical energy and hydrogen energy, as well as the conversions of biomass and solar energy related with chemical issues to promote academic exchanges in the field of energy chemistry and to accelerate the exploration, research and development of energy science and technologies. This journal focuses on original research papers covering various topics within energy chemistry worldwide, including: Optimized utilization of fossil energy Hydrogen energy Conversion and storage of electrochemical energy Capture, storage, and chemical conversion of carbon dioxide Materials and nanotechnologies for energy conversion and storage Chemistry in biomass conversion Chemistry in the utilization of solar energy
期刊最新文献
Unraveling the exceptional kinetics of Zn||organic batteries in hydrated deep eutectic solution Electronic modulation towards MOFs as template derived CoP via engineered heteroatom defect for a highly efficient overall water splitting Enhanced dynamics of Al3+/H+ ions in aqueous aluminum ion batteries: Construction of metastable structures in vanadium pentoxide upon oxygen vacancies Upcycling of monomers derived from waste polyester plastics via electrocatalysis Design principles of novel Zn fluorocarboxylate protection layer toward durable dendrite-free Zn metal anodes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1