{"title":"Design of tunable terahertz metamaterial for variable optical attenuation and sensing applications","authors":"","doi":"10.1016/j.sbsr.2024.100705","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, an actively tunable terahertz metamaterial (TTM) is proposed to realize variable optical attenuation and sensing applications. The unit cell of TTM is composed of H-shaped resonator (HSR) and C-shaped resonator (CSR). The resonant frequency can be tuned from 0.60 THz to 0.82 THz and show an analog electromagnetically induced transparency (EIT) phenomenon. By adjusting the geometry parameters of HSR and CSR, the enhanced quality (Q) factor is obtained from 2 to 14. Moreover, the CSR can be rotated from 0° to 90° to show the potential in the variable optical attenuator (VOA) application. The resonant intensity at 0.60 THz can be gradually decreased and then disappeared eventually when the CSR rotated from 0° to 90° in TE mode. While the resonant intensity at 0.60 THz can be gradually increased and then reach maximum value from 0° to 90° in TM mode. To demonstrate the proposed TTM can be used for the environmental sensing application, the TTM is exposed on the ambient environment with different refractive indexes from 1.0 to 2.2. The maximum sensitivity is 67 GHz. This work offers a novel approach for the THz metamaterial using for the VOA, optical switching, and sensing applications.</div></div>","PeriodicalId":424,"journal":{"name":"Sensing and Bio-Sensing Research","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensing and Bio-Sensing Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214180424000874","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, an actively tunable terahertz metamaterial (TTM) is proposed to realize variable optical attenuation and sensing applications. The unit cell of TTM is composed of H-shaped resonator (HSR) and C-shaped resonator (CSR). The resonant frequency can be tuned from 0.60 THz to 0.82 THz and show an analog electromagnetically induced transparency (EIT) phenomenon. By adjusting the geometry parameters of HSR and CSR, the enhanced quality (Q) factor is obtained from 2 to 14. Moreover, the CSR can be rotated from 0° to 90° to show the potential in the variable optical attenuator (VOA) application. The resonant intensity at 0.60 THz can be gradually decreased and then disappeared eventually when the CSR rotated from 0° to 90° in TE mode. While the resonant intensity at 0.60 THz can be gradually increased and then reach maximum value from 0° to 90° in TM mode. To demonstrate the proposed TTM can be used for the environmental sensing application, the TTM is exposed on the ambient environment with different refractive indexes from 1.0 to 2.2. The maximum sensitivity is 67 GHz. This work offers a novel approach for the THz metamaterial using for the VOA, optical switching, and sensing applications.
期刊介绍:
Sensing and Bio-Sensing Research is an open access journal dedicated to the research, design, development, and application of bio-sensing and sensing technologies. The editors will accept research papers, reviews, field trials, and validation studies that are of significant relevance. These submissions should describe new concepts, enhance understanding of the field, or offer insights into the practical application, manufacturing, and commercialization of bio-sensing and sensing technologies.
The journal covers a wide range of topics, including sensing principles and mechanisms, new materials development for transducers and recognition components, fabrication technology, and various types of sensors such as optical, electrochemical, mass-sensitive, gas, biosensors, and more. It also includes environmental, process control, and biomedical applications, signal processing, chemometrics, optoelectronic, mechanical, thermal, and magnetic sensors, as well as interface electronics. Additionally, it covers sensor systems and applications, µTAS (Micro Total Analysis Systems), development of solid-state devices for transducing physical signals, and analytical devices incorporating biological materials.