{"title":"Germanium metalens for longwave infrared applications","authors":"J.M. Borlido , E.M.F. Vieira , J.H. Correia , J.A. Rodrigues","doi":"10.1016/j.ijleo.2024.172087","DOIUrl":null,"url":null,"abstract":"<div><div>Metalenses represent a paradigm shift in optics, offering unprecedented control over light manipulation. This study focuses on the design optimization of a polarization-insensitive germanium (Ge) metalens operating in the longwave infrared (LWIR) regime. Employing rigorous coupled-wave analysis (RCWA) and finite-difference time-domain (FDTD) simulations, a metalens with 1 mm focal length was designed using nanopillars with 3.5 µm height and radius ranging from 0.55 µm to 1.2 µm. Then, the impact of lattice size and numerical aperture (NA) on lens performance was investigated. The results indicate that smaller lattices allow finer phase control and enhanced transmittance stability across the phase profile if significant coupling effects are not verified. As the NA increases, the focal spot size decreases, albeit with diminishing returns towards the diffraction limit. To the best of our knowledge, it is the first work that shows high focal efficiency (∼80 %) across multiple NA's for a LWIR metalens with a diameter under 1100 µm. The proposed metalens is compatible with complementary metal-oxide-semiconductor (CMOS) technology and supports low-cost manufacturing.</div></div>","PeriodicalId":19513,"journal":{"name":"Optik","volume":"317 ","pages":"Article 172087"},"PeriodicalIF":3.1000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optik","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0030402624004868","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
Metalenses represent a paradigm shift in optics, offering unprecedented control over light manipulation. This study focuses on the design optimization of a polarization-insensitive germanium (Ge) metalens operating in the longwave infrared (LWIR) regime. Employing rigorous coupled-wave analysis (RCWA) and finite-difference time-domain (FDTD) simulations, a metalens with 1 mm focal length was designed using nanopillars with 3.5 µm height and radius ranging from 0.55 µm to 1.2 µm. Then, the impact of lattice size and numerical aperture (NA) on lens performance was investigated. The results indicate that smaller lattices allow finer phase control and enhanced transmittance stability across the phase profile if significant coupling effects are not verified. As the NA increases, the focal spot size decreases, albeit with diminishing returns towards the diffraction limit. To the best of our knowledge, it is the first work that shows high focal efficiency (∼80 %) across multiple NA's for a LWIR metalens with a diameter under 1100 µm. The proposed metalens is compatible with complementary metal-oxide-semiconductor (CMOS) technology and supports low-cost manufacturing.
期刊介绍:
Optik publishes articles on all subjects related to light and electron optics and offers a survey on the state of research and technical development within the following fields:
Optics:
-Optics design, geometrical and beam optics, wave optics-
Optical and micro-optical components, diffractive optics, devices and systems-
Photoelectric and optoelectronic devices-
Optical properties of materials, nonlinear optics, wave propagation and transmission in homogeneous and inhomogeneous materials-
Information optics, image formation and processing, holographic techniques, microscopes and spectrometer techniques, and image analysis-
Optical testing and measuring techniques-
Optical communication and computing-
Physiological optics-
As well as other related topics.