{"title":"Open knowledge graph completion with negative-aware representation learning and multi-source reliability inference","authors":"Huang Peng, Weixin Zeng, Jiuyang Tang, Mao Wang, Hongbin Huang, Xiang Zhao","doi":"10.1016/j.inffus.2024.102729","DOIUrl":null,"url":null,"abstract":"<div><div>Multi-source data fusion is essential for building smart cities by providing a comprehensive and holistic understanding of urban environments. Specifically, smart city-oriented knowledge graphs (KGs) require supplementary information from other open sources to increase their completeness, thus better supporting downstream tasks for smart cities. Nevertheless, existing open knowledge graph completion (KGC) approaches often overlook source quality assessment and fail to fully utilize prior knowledge, which tend to yield less satisfying results. To fill in these gaps, in this work, we propose a new open KGC method with negative-aware representation learning and multi-source reliability inference, i.e., <span>Nari</span>, which can effectively integrate the multi-source data concerning sustainable cities, providing reliable knowledge for downstream tasks. Specifically, we first train a graph neural network based encoder with a novel negative sampling strategy to better characterize prior knowledge in KG, and then identify new facts based on the learned prior knowledge and source reliability. The experiments on both general benchmark and waterlogging benchmark pertaining to sustainable cities demonstrate the effectiveness and wide applicability of <span>Nari</span>.</div></div>","PeriodicalId":50367,"journal":{"name":"Information Fusion","volume":"115 ","pages":"Article 102729"},"PeriodicalIF":14.7000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Fusion","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1566253524005074","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Multi-source data fusion is essential for building smart cities by providing a comprehensive and holistic understanding of urban environments. Specifically, smart city-oriented knowledge graphs (KGs) require supplementary information from other open sources to increase their completeness, thus better supporting downstream tasks for smart cities. Nevertheless, existing open knowledge graph completion (KGC) approaches often overlook source quality assessment and fail to fully utilize prior knowledge, which tend to yield less satisfying results. To fill in these gaps, in this work, we propose a new open KGC method with negative-aware representation learning and multi-source reliability inference, i.e., Nari, which can effectively integrate the multi-source data concerning sustainable cities, providing reliable knowledge for downstream tasks. Specifically, we first train a graph neural network based encoder with a novel negative sampling strategy to better characterize prior knowledge in KG, and then identify new facts based on the learned prior knowledge and source reliability. The experiments on both general benchmark and waterlogging benchmark pertaining to sustainable cities demonstrate the effectiveness and wide applicability of Nari.
期刊介绍:
Information Fusion serves as a central platform for showcasing advancements in multi-sensor, multi-source, multi-process information fusion, fostering collaboration among diverse disciplines driving its progress. It is the leading outlet for sharing research and development in this field, focusing on architectures, algorithms, and applications. Papers dealing with fundamental theoretical analyses as well as those demonstrating their application to real-world problems will be welcome.