Rare-earth praseodymium-substituted Bi5Ti3FeO15 exhibiting enhanced piezoelectric properties for high-temperature application

Xin-Yu Yu , Qian Wang , Hui-Lin Li , Yi-Jun Wan , En-Meng Liang , Chun-Ming Wang
{"title":"Rare-earth praseodymium-substituted Bi5Ti3FeO15 exhibiting enhanced piezoelectric properties for high-temperature application","authors":"Xin-Yu Yu ,&nbsp;Qian Wang ,&nbsp;Hui-Lin Li ,&nbsp;Yi-Jun Wan ,&nbsp;En-Meng Liang ,&nbsp;Chun-Ming Wang","doi":"10.1016/j.chphma.2024.06.007","DOIUrl":null,"url":null,"abstract":"<div><div>Owing to their exceptional piezoelectric effects, piezoelectric materials play a crucial role in high-end technologies and contribute significantly to the national economy. Bismuth layer-structured ferroelectrics (BLSFs) possess high Curie temperatures, making them a focal point of research in high-temperature piezoelectric sensor devices. However, their poor piezoelectric performance and low direct-current (DC) electrical resistivity hinder their effective deployment in high-temperature applications. To overcome these shortcomings, we employed composition optimization by partially substituting bismuth ions with rare-earth praseodymium ions. This approach enhances the piezoelectric performance and improves the DC electrical resistivity by preventing the loss of volatile bismuth ions and stabilizing the bismuth oxide layer (Bi<sub>2</sub>O<sub>2</sub>)<sup>2+</sup>, thereby reducing the concentration of oxygen vacancies. Consequently, we achieved a large piezoelectric constant <em>d</em><sub>33</sub> of 23.5 pC/N in praseodymium-substituted Bi<sub>5</sub>Ti<sub>3</sub>FeO<sub>15</sub>, which is three times higher than that of pure Bi<sub>5</sub>Ti<sub>3</sub>FeO<sub>15</sub> (7.1 pC/N), along with a high Curie temperature <em>T</em><sub>C</sub> of 778 °C. Additionally, the optimal composition of 4 mol% praseodymium-substituted Bi<sub>5</sub>Ti<sub>3</sub>FeO<sub>15</sub> exhibits good thermal stability of electromechanical coupling characteristics up to 300 °C. This study holds promise for a wide array of high-temperature piezoelectric applications and has the potential to accelerate the development of high-temperature piezoelectric sensor technologies.</div></div>","PeriodicalId":100236,"journal":{"name":"ChemPhysMater","volume":"3 4","pages":"Pages 431-439"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemPhysMater","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772571524000305","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Owing to their exceptional piezoelectric effects, piezoelectric materials play a crucial role in high-end technologies and contribute significantly to the national economy. Bismuth layer-structured ferroelectrics (BLSFs) possess high Curie temperatures, making them a focal point of research in high-temperature piezoelectric sensor devices. However, their poor piezoelectric performance and low direct-current (DC) electrical resistivity hinder their effective deployment in high-temperature applications. To overcome these shortcomings, we employed composition optimization by partially substituting bismuth ions with rare-earth praseodymium ions. This approach enhances the piezoelectric performance and improves the DC electrical resistivity by preventing the loss of volatile bismuth ions and stabilizing the bismuth oxide layer (Bi2O2)2+, thereby reducing the concentration of oxygen vacancies. Consequently, we achieved a large piezoelectric constant d33 of 23.5 pC/N in praseodymium-substituted Bi5Ti3FeO15, which is three times higher than that of pure Bi5Ti3FeO15 (7.1 pC/N), along with a high Curie temperature TC of 778 °C. Additionally, the optimal composition of 4 mol% praseodymium-substituted Bi5Ti3FeO15 exhibits good thermal stability of electromechanical coupling characteristics up to 300 °C. This study holds promise for a wide array of high-temperature piezoelectric applications and has the potential to accelerate the development of high-temperature piezoelectric sensor technologies.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
稀土镨取代的 Bi5Ti3FeO15 在高温应用中表现出更强的压电特性
压电材料因其卓越的压电效应,在高端技术领域发挥着重要作用,并为国民经济做出了巨大贡献。铋层结构铁电体(BLSFs)具有很高的居里温度,因此成为高温压电传感器件的研究热点。然而,它们较差的压电性能和较低的直流(DC)电阻率阻碍了它们在高温应用中的有效部署。为了克服这些缺点,我们采用了成分优化方法,用稀土镨离子部分替代铋离子。这种方法通过防止挥发性铋离子的损失和稳定氧化铋层 (Bi2O2)2+,从而降低氧空位的浓度,提高了压电性能并改善了直流电阻率。因此,我们在镨取代的 Bi5Ti3FeO15 中获得了 23.5 pC/N 的较大压电常数 d33,是纯 Bi5Ti3FeO15(7.1 pC/N)的三倍,同时居里温度 TC 也高达 778 ℃。此外,4 mol% 镨取代的 Bi5Ti3FeO15 的最佳成分在 300 ℃ 以下具有良好的热稳定性和机电耦合特性。这项研究为一系列高温压电应用带来了希望,并有可能加速高温压电传感器技术的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.90
自引率
0.00%
发文量
0
期刊最新文献
Detection of a glass fiber-reinforced polymer with defects by terahertz computed tomography Anisotropic etching of 2D layered materials A first look at the formation of PEO-PDA coatings on 3D titanium Theoretical study on the efficiency of new organic dyes based on (E)-2-(2-(thiophen-3-yl)vinyl)-1,1′-bipyrrole as dye-sensitized solar cell sensitizers Swollen hydrogel nanotechnology: Advanced applications of the rudimentary swelling properties of hydrogels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1