{"title":"Predicting potential hard materials in NbB ternary boride: First-principles calculations","authors":"","doi":"10.1016/j.ijrmhm.2024.106927","DOIUrl":null,"url":null,"abstract":"<div><div>To identify potential superhard materials, we conducted a comprehensive theoretical investigation of the thermodynamic and kinetic stability, mechanical properties, electronic structure, Debye temperatures and melting point of sixteen ternary transition metal borides NbTMB<sub>x</sub> (x = 1, 2, 4 and TM = Ti, V, Fe, Co, Ni, Zr, Ru, Hf, W, Os) using first-principles methods. Our findings indicate that, with the exception of NbFeB, NbRuB, and NbWB, all other borides exhibit both thermodynamic and kinetic stability. Notably, NbTiB<sub>4</sub>, NbVB<sub>4</sub>, NbZrB<sub>4</sub> and NbHfB<sub>4</sub> demonstrate superior hardness and enhanced resistance to deformation, with NbTiB<sub>4</sub> showing an impressive hardness value of 40.84 GPa, positioning it as a promising candidate for superhard materials. Both NbVB<sub>4</sub> and NbTiB<sub>4</sub> have very high Debye temperatures and melting points and can be used in high temperature environments. We further explored the mechanical properties of NbTiB<sub>4</sub> at elevated temperatures by employing a combination of first-principles and quasi-static methods. Our analysis reveals that the elastic constants and moduli of NbTiB<sub>4</sub> decrease with increasing temperature. Additionally, bonding analysis indicates that all Nb<img>B ternary borides exhibit hybridization involving metallic, ionic, and covalent interactions, resulting in the formation of exceptionally strong covalent bonds between boron atoms.</div></div>","PeriodicalId":14216,"journal":{"name":"International Journal of Refractory Metals & Hard Materials","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Refractory Metals & Hard Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263436824003755","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
To identify potential superhard materials, we conducted a comprehensive theoretical investigation of the thermodynamic and kinetic stability, mechanical properties, electronic structure, Debye temperatures and melting point of sixteen ternary transition metal borides NbTMBx (x = 1, 2, 4 and TM = Ti, V, Fe, Co, Ni, Zr, Ru, Hf, W, Os) using first-principles methods. Our findings indicate that, with the exception of NbFeB, NbRuB, and NbWB, all other borides exhibit both thermodynamic and kinetic stability. Notably, NbTiB4, NbVB4, NbZrB4 and NbHfB4 demonstrate superior hardness and enhanced resistance to deformation, with NbTiB4 showing an impressive hardness value of 40.84 GPa, positioning it as a promising candidate for superhard materials. Both NbVB4 and NbTiB4 have very high Debye temperatures and melting points and can be used in high temperature environments. We further explored the mechanical properties of NbTiB4 at elevated temperatures by employing a combination of first-principles and quasi-static methods. Our analysis reveals that the elastic constants and moduli of NbTiB4 decrease with increasing temperature. Additionally, bonding analysis indicates that all NbB ternary borides exhibit hybridization involving metallic, ionic, and covalent interactions, resulting in the formation of exceptionally strong covalent bonds between boron atoms.
期刊介绍:
The International Journal of Refractory Metals and Hard Materials (IJRMHM) publishes original research articles concerned with all aspects of refractory metals and hard materials. Refractory metals are defined as metals with melting points higher than 1800 °C. These are tungsten, molybdenum, chromium, tantalum, niobium, hafnium, and rhenium, as well as many compounds and alloys based thereupon. Hard materials that are included in the scope of this journal are defined as materials with hardness values higher than 1000 kg/mm2, primarily intended for applications as manufacturing tools or wear resistant components in mechanical systems. Thus they encompass carbides, nitrides and borides of metals, and related compounds. A special focus of this journal is put on the family of hardmetals, which is also known as cemented tungsten carbide, and cermets which are based on titanium carbide and carbonitrides with or without a metal binder. Ceramics and superhard materials including diamond and cubic boron nitride may also be accepted provided the subject material is presented as hard materials as defined above.