Congwen Tang , Dengzhi Wang , Pengfei Sun , Tao Lai , Heng Zhang , Jun Zhou , Gang Ren
{"title":"The CuNb alloys prepared by laser directed energy deposition: Effect of Ti addition on microstructure and properties","authors":"Congwen Tang , Dengzhi Wang , Pengfei Sun , Tao Lai , Heng Zhang , Jun Zhou , Gang Ren","doi":"10.1016/j.ijrmhm.2025.107152","DOIUrl":null,"url":null,"abstract":"<div><div>Preparing Cu<img>Nb alloys on copper substrate by laser directed energy deposition (LDED) can improve the ablative resistance effectively. However, the mechanical properties of the Cu<img>Nb alloys deteriorate due to the weak Cu<img>Nb interfacial bonding. To address this challenge, we propose a strategy that an interphase TiO is introduced to optimize the interface structure. Adding Ti element can significantly transform the morphology of the Nb from cellular structure to fine dendrite. It was found that the formation of TiO interphase can transform the incoherent Cu/Nb interface into the semi-coherent Cu/TiO/Nb interface that the dislocations can transmit across more easily. Therefore, the Cu-Nb-Ti deposited alloys exhibit higher total elongation. In addition, the Cu-Nb-Ti deposited alloys exhibit higher strength due to the grain boundary strengthening and solute solution strengthening, and the Cu-Nb-1.5Ti deposited alloy achieves the most excellent synthetic performance.</div></div>","PeriodicalId":14216,"journal":{"name":"International Journal of Refractory Metals & Hard Materials","volume":"130 ","pages":"Article 107152"},"PeriodicalIF":4.2000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Refractory Metals & Hard Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263436825001179","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Preparing CuNb alloys on copper substrate by laser directed energy deposition (LDED) can improve the ablative resistance effectively. However, the mechanical properties of the CuNb alloys deteriorate due to the weak CuNb interfacial bonding. To address this challenge, we propose a strategy that an interphase TiO is introduced to optimize the interface structure. Adding Ti element can significantly transform the morphology of the Nb from cellular structure to fine dendrite. It was found that the formation of TiO interphase can transform the incoherent Cu/Nb interface into the semi-coherent Cu/TiO/Nb interface that the dislocations can transmit across more easily. Therefore, the Cu-Nb-Ti deposited alloys exhibit higher total elongation. In addition, the Cu-Nb-Ti deposited alloys exhibit higher strength due to the grain boundary strengthening and solute solution strengthening, and the Cu-Nb-1.5Ti deposited alloy achieves the most excellent synthetic performance.
期刊介绍:
The International Journal of Refractory Metals and Hard Materials (IJRMHM) publishes original research articles concerned with all aspects of refractory metals and hard materials. Refractory metals are defined as metals with melting points higher than 1800 °C. These are tungsten, molybdenum, chromium, tantalum, niobium, hafnium, and rhenium, as well as many compounds and alloys based thereupon. Hard materials that are included in the scope of this journal are defined as materials with hardness values higher than 1000 kg/mm2, primarily intended for applications as manufacturing tools or wear resistant components in mechanical systems. Thus they encompass carbides, nitrides and borides of metals, and related compounds. A special focus of this journal is put on the family of hardmetals, which is also known as cemented tungsten carbide, and cermets which are based on titanium carbide and carbonitrides with or without a metal binder. Ceramics and superhard materials including diamond and cubic boron nitride may also be accepted provided the subject material is presented as hard materials as defined above.