{"title":"Design of a high-precision linear regulating ball valve","authors":"Zhe Zhao , Yongguang Liu , Xiaohui Gao , Saisai Tong","doi":"10.1016/j.flowmeasinst.2024.102708","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, a high-precision linear regulating ball valve is designed from four aspects: positioning accuracy, sealing performance, flow area and flow coefficient. A mathematical expression for the relationship between spool thickness, incision angle and flow coefficient was developed. The correlation matrix <span><math><mi>P</mi></math></span> between the structural parameters and the flow coefficient is obtained by surface fitting. The structural parameters under linear requirements are further determined by determining the P matrix. A more accurate linearization of the flow characteristics was achieved. The CFD data showed that the error of the optimized flow rate with respect to the ideal linear data was less than 0.15 kg/s. The average error was reduced by 43.8% when compared with the minimum error of different structures. The variance decreased by about 58.2% compared to the minimum variance for different structures. The final flow test of the optimized ball valve was carried out. The error between the flow test data and the CFD data is less than 0.14 kg/s and the maximum relative error is about 6.58%.</div></div>","PeriodicalId":50440,"journal":{"name":"Flow Measurement and Instrumentation","volume":"100 ","pages":"Article 102708"},"PeriodicalIF":2.3000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Flow Measurement and Instrumentation","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0955598624001882","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, a high-precision linear regulating ball valve is designed from four aspects: positioning accuracy, sealing performance, flow area and flow coefficient. A mathematical expression for the relationship between spool thickness, incision angle and flow coefficient was developed. The correlation matrix between the structural parameters and the flow coefficient is obtained by surface fitting. The structural parameters under linear requirements are further determined by determining the P matrix. A more accurate linearization of the flow characteristics was achieved. The CFD data showed that the error of the optimized flow rate with respect to the ideal linear data was less than 0.15 kg/s. The average error was reduced by 43.8% when compared with the minimum error of different structures. The variance decreased by about 58.2% compared to the minimum variance for different structures. The final flow test of the optimized ball valve was carried out. The error between the flow test data and the CFD data is less than 0.14 kg/s and the maximum relative error is about 6.58%.
期刊介绍:
Flow Measurement and Instrumentation is dedicated to disseminating the latest research results on all aspects of flow measurement, in both closed conduits and open channels. The design of flow measurement systems involves a wide variety of multidisciplinary activities including modelling the flow sensor, the fluid flow and the sensor/fluid interactions through the use of computation techniques; the development of advanced transducer systems and their associated signal processing and the laboratory and field assessment of the overall system under ideal and disturbed conditions.
FMI is the essential forum for critical information exchange, and contributions are particularly encouraged in the following areas of interest:
Modelling: the application of mathematical and computational modelling to the interaction of fluid dynamics with flowmeters, including flowmeter behaviour, improved flowmeter design and installation problems. Application of CAD/CAE techniques to flowmeter modelling are eligible.
Design and development: the detailed design of the flowmeter head and/or signal processing aspects of novel flowmeters. Emphasis is given to papers identifying new sensor configurations, multisensor flow measurement systems, non-intrusive flow metering techniques and the application of microelectronic techniques in smart or intelligent systems.
Calibration techniques: including descriptions of new or existing calibration facilities and techniques, calibration data from different flowmeter types, and calibration intercomparison data from different laboratories.
Installation effect data: dealing with the effects of non-ideal flow conditions on flowmeters. Papers combining a theoretical understanding of flowmeter behaviour with experimental work are particularly welcome.