{"title":"A systematic review on greenhouse type solar dryers","authors":"Khikmatov Bekhzod Amonovich, Mirzaev Mirfayz Salimovich, Samiev Kamoliddin A’zamovich","doi":"10.1016/j.solener.2024.113021","DOIUrl":null,"url":null,"abstract":"<div><div>Food and Agriculture Organization reports show that farmers today lose 35–45 percent of their crops during harvesting and transportation due to various reasons. One third of the food consumed is thrown away by people. Greenhouse gases released from these wastes make up about 10 % of the total greenhouse gases released into the atmosphere. If serious attention is not paid to this issue, serious problems such as shortage of high-quality food and high prices will cause more concern for humanity. Drying food products using solar dryers is considered as one of the alternative solutions to this problem. In addition, the use of renewable energy increases the possibilities of reducing dependence on energy obtained from fossil fuels. For this reason, there is a lot of research going on in the field of solar dryers today. In this work, scientific research and review articles conducted in the field of greenhouse type solar dryers for 2013–2023 were analyzed. Based on the PRISMA method, 100 of the 1675 articles were selected and included in this review. According to the analysis, it was found that the energy efficiency of greenhouse-type solar dryers is 11–73 %, and the energy efficiency of solar air collectors and biomass furnaces integrated into them is in the range of 45–81 % and 47–87 %. The lifetime of various greenhouse type solar dryers is between 4–35 years, their price is between 220–10659 USD and the payback period is between 0.3–11 years, embodied energy is 136–18302 kWh, and EPBT is in the range of 1.1–3.63 years.</div></div>","PeriodicalId":428,"journal":{"name":"Solar Energy","volume":"283 ","pages":"Article 113021"},"PeriodicalIF":6.0000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038092X24007163","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Food and Agriculture Organization reports show that farmers today lose 35–45 percent of their crops during harvesting and transportation due to various reasons. One third of the food consumed is thrown away by people. Greenhouse gases released from these wastes make up about 10 % of the total greenhouse gases released into the atmosphere. If serious attention is not paid to this issue, serious problems such as shortage of high-quality food and high prices will cause more concern for humanity. Drying food products using solar dryers is considered as one of the alternative solutions to this problem. In addition, the use of renewable energy increases the possibilities of reducing dependence on energy obtained from fossil fuels. For this reason, there is a lot of research going on in the field of solar dryers today. In this work, scientific research and review articles conducted in the field of greenhouse type solar dryers for 2013–2023 were analyzed. Based on the PRISMA method, 100 of the 1675 articles were selected and included in this review. According to the analysis, it was found that the energy efficiency of greenhouse-type solar dryers is 11–73 %, and the energy efficiency of solar air collectors and biomass furnaces integrated into them is in the range of 45–81 % and 47–87 %. The lifetime of various greenhouse type solar dryers is between 4–35 years, their price is between 220–10659 USD and the payback period is between 0.3–11 years, embodied energy is 136–18302 kWh, and EPBT is in the range of 1.1–3.63 years.
期刊介绍:
Solar Energy welcomes manuscripts presenting information not previously published in journals on any aspect of solar energy research, development, application, measurement or policy. The term "solar energy" in this context includes the indirect uses such as wind energy and biomass