Junjie Luo , Pengyuan Liu , Wenhui Xu , Tianhong Zhao , Filip Biljecki
{"title":"A perception-powered urban digital twin to support human-centered urban planning and sustainable city development","authors":"Junjie Luo , Pengyuan Liu , Wenhui Xu , Tianhong Zhao , Filip Biljecki","doi":"10.1016/j.cities.2024.105473","DOIUrl":null,"url":null,"abstract":"<div><div>Urban Digital Twins (UDTs) offer a promising avenue for advancing sustainable urban development by mirroring physical environments and complex urban dynamics. Such technology enables urban planners to predict and analyze the impacts of various urban scenarios, addressing a global priority for sustainable urban environments. However, their potential in public engagement for environmental perception remains unfulfilled, with existing research lacking the capability to analyze urbanscapes' visual features and predict public perceptions based on photo-realistic renderings. To fill the gap, our study developed and implemented a UDT platform designed for the dual purposes of objective feature evaluation and subjective visual perception, alongside the prediction of perceptions in simulated scenarios. We incorporated DeepLabV3, a deep learning model for imagery semantic segmentation, to quantify a series of visual features within the built environment, such as the proportion of vegetation and architectural elements. Subjective visual perceptions (e.g. safety and lively) are captured using immersive virtual reality to gather public perceptions of different scenarios and learn patterns. Further, utilizing a photo-realistic rendering engine, high-quality renderings of textures and materials for UDT were achieved, and we proved their veracity based on a perception experiment. Afterwards, we employ the random forest algorithm for automated perception predictions of rendering scenarios. The implementation was demonstrated with a case study on an urban greenway in the central area of Singapore. We compared both the objective evaluation and subjective perception results, followed by a demonstration of automated visual perception prediction through photo-realistic scenario simulations, such as modifying vegetation density or introducing new architectural elements to the skyline, to predict the perception of scenarios before they are built, leading to more efficient and automated urban planning.</div></div>","PeriodicalId":48405,"journal":{"name":"Cities","volume":"156 ","pages":"Article 105473"},"PeriodicalIF":6.0000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cities","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0264275124006875","RegionNum":1,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"URBAN STUDIES","Score":null,"Total":0}
引用次数: 0
Abstract
Urban Digital Twins (UDTs) offer a promising avenue for advancing sustainable urban development by mirroring physical environments and complex urban dynamics. Such technology enables urban planners to predict and analyze the impacts of various urban scenarios, addressing a global priority for sustainable urban environments. However, their potential in public engagement for environmental perception remains unfulfilled, with existing research lacking the capability to analyze urbanscapes' visual features and predict public perceptions based on photo-realistic renderings. To fill the gap, our study developed and implemented a UDT platform designed for the dual purposes of objective feature evaluation and subjective visual perception, alongside the prediction of perceptions in simulated scenarios. We incorporated DeepLabV3, a deep learning model for imagery semantic segmentation, to quantify a series of visual features within the built environment, such as the proportion of vegetation and architectural elements. Subjective visual perceptions (e.g. safety and lively) are captured using immersive virtual reality to gather public perceptions of different scenarios and learn patterns. Further, utilizing a photo-realistic rendering engine, high-quality renderings of textures and materials for UDT were achieved, and we proved their veracity based on a perception experiment. Afterwards, we employ the random forest algorithm for automated perception predictions of rendering scenarios. The implementation was demonstrated with a case study on an urban greenway in the central area of Singapore. We compared both the objective evaluation and subjective perception results, followed by a demonstration of automated visual perception prediction through photo-realistic scenario simulations, such as modifying vegetation density or introducing new architectural elements to the skyline, to predict the perception of scenarios before they are built, leading to more efficient and automated urban planning.
期刊介绍:
Cities offers a comprehensive range of articles on all aspects of urban policy. It provides an international and interdisciplinary platform for the exchange of ideas and information between urban planners and policy makers from national and local government, non-government organizations, academia and consultancy. The primary aims of the journal are to analyse and assess past and present urban development and management as a reflection of effective, ineffective and non-existent planning policies; and the promotion of the implementation of appropriate urban policies in both the developed and the developing world.