A high-performance model predictive torque control concept for induction machines for electric vehicle applications

IF 5.4 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS Control Engineering Practice Pub Date : 2024-10-19 DOI:10.1016/j.conengprac.2024.106128
Georg Janisch , Andreas Kugi , Wolfgang Kemmetmüller
{"title":"A high-performance model predictive torque control concept for induction machines for electric vehicle applications","authors":"Georg Janisch ,&nbsp;Andreas Kugi ,&nbsp;Wolfgang Kemmetmüller","doi":"10.1016/j.conengprac.2024.106128","DOIUrl":null,"url":null,"abstract":"<div><div>Induction machines are widely used in electric vehicles due to their high reliability and low costs. Controlling these machines to meet the high-performance demands presents a significant challenge since they are often operated at high speed and within operating ranges where magnetic saturation plays a significant role. Furthermore, specific motor parameters are not accurately known or vary during operation, e.g., due to temperature changes. Therefore, there is still a demand for control strategies to meet these demands systematically. This paper proposes a novel control strategy combining a model predictive control (MPC) concept with a fast feedback controller and a nonlinear observer. The proposed MPC strategy is based on a magnetic nonlinear model and allows for a long prediction horizon. It features high torque dynamics while ensuring energy optimality in the steady state. The results also show excellent performance for high rotational speeds and the operation at the system limits, outperforming state-of-the-art control concepts.</div></div>","PeriodicalId":50615,"journal":{"name":"Control Engineering Practice","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Control Engineering Practice","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0967066124002879","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Induction machines are widely used in electric vehicles due to their high reliability and low costs. Controlling these machines to meet the high-performance demands presents a significant challenge since they are often operated at high speed and within operating ranges where magnetic saturation plays a significant role. Furthermore, specific motor parameters are not accurately known or vary during operation, e.g., due to temperature changes. Therefore, there is still a demand for control strategies to meet these demands systematically. This paper proposes a novel control strategy combining a model predictive control (MPC) concept with a fast feedback controller and a nonlinear observer. The proposed MPC strategy is based on a magnetic nonlinear model and allows for a long prediction horizon. It features high torque dynamics while ensuring energy optimality in the steady state. The results also show excellent performance for high rotational speeds and the operation at the system limits, outperforming state-of-the-art control concepts.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于电动汽车感应机的高性能模型预测扭矩控制概念
感应电机因其高可靠性和低成本而被广泛应用于电动汽车中。控制这些机器以满足高性能要求是一项重大挑战,因为它们通常是在高速运转和磁饱和起重要作用的工作范围内运行。此外,具体的电机参数并不准确,或者在运行过程中会发生变化,例如由于温度变化。因此,仍然需要控制策略来系统地满足这些需求。本文提出了一种结合模型预测控制(MPC)概念、快速反馈控制器和非线性观测器的新型控制策略。所提出的 MPC 策略基于磁性非线性模型,允许较长的预测范围。它具有高扭矩动态特性,同时确保稳态下的能量优化。研究结果还显示,该策略在高转速和系统极限运行时表现出色,优于最先进的控制概念。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Control Engineering Practice
Control Engineering Practice 工程技术-工程:电子与电气
CiteScore
9.20
自引率
12.20%
发文量
183
审稿时长
44 days
期刊介绍: Control Engineering Practice strives to meet the needs of industrial practitioners and industrially related academics and researchers. It publishes papers which illustrate the direct application of control theory and its supporting tools in all possible areas of automation. As a result, the journal only contains papers which can be considered to have made significant contributions to the application of advanced control techniques. It is normally expected that practical results should be included, but where simulation only studies are available, it is necessary to demonstrate that the simulation model is representative of a genuine application. Strictly theoretical papers will find a more appropriate home in Control Engineering Practice''s sister publication, Automatica. It is also expected that papers are innovative with respect to the state of the art and are sufficiently detailed for a reader to be able to duplicate the main results of the paper (supplementary material, including datasets, tables, code and any relevant interactive material can be made available and downloaded from the website). The benefits of the presented methods must be made very clear and the new techniques must be compared and contrasted with results obtained using existing methods. Moreover, a thorough analysis of failures that may happen in the design process and implementation can also be part of the paper. The scope of Control Engineering Practice matches the activities of IFAC. Papers demonstrating the contribution of automation and control in improving the performance, quality, productivity, sustainability, resource and energy efficiency, and the manageability of systems and processes for the benefit of mankind and are relevant to industrial practitioners are most welcome.
期刊最新文献
Randomized iterative feedback tuning for fast MIMO feedback design of a mechatronic system Lane-free signal-free intersection crossing via model predictive control Control design and analysis for autonomous underwater vehicles using integral quadratic constraints Time-optimal multi-point trajectory generation for robotic manipulators with continuous jerk and constant average acceleration Study of control strategy for cylinder-to-cylinder combustion homogeneity of marine medium-speed diesel engines
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1