Fan Yang , Juan Li , Chunquan Yu , Sidan Chen , Yang Li , Zhigang Zhang , Wei Wang
{"title":"Complicated thermo-chemical heterogeneity of the mantle transition zone beneath the Philippine Sea Plate revealed by SS precursors investigation","authors":"Fan Yang , Juan Li , Chunquan Yu , Sidan Chen , Yang Li , Zhigang Zhang , Wei Wang","doi":"10.1016/j.epsl.2024.119092","DOIUrl":null,"url":null,"abstract":"<div><div>The Philippine Sea Plate (PSP), a region renowned for its intricate history of multi-stage subduction and back-arc extension, encounters difficulties in elucidating its deep seismic structure, primarily due to the sparse distribution of seismic stations. This study uses over 44,086 traces of SS precursors collected from >1,000 seismic stations over 10–20 years period, to image the mantle transition zone (MTZ) beneath the PSP. With the curvelet denoising technique, we provide high-resolution maps of the depths of the 410 km (D410) and 660 km (D660) discontinuities and the thickness of the MTZ. Notably, we demonstrate a 10–35 km MTZ thickening extending from the West Philippine Basin to the Shikoku Basin, which may be associated with the thermal effect and dehydration of stagnated slabs in the MTZ. Furthermore, the reflection gap and multiple reflectors were both observed in D410 and D660 beneath the Mariana Trench, which suggests that the vertically subducted Pacific plate transports substantial water and non-olivine components into the MTZ in this area. Additionally, a ∼10–25 km MTZ thinning with an abnormally shallow D660 has been observed beneath the Parece Vela Basin and Caroline Plate in the southern PSP, suggesting the potential existence of thermal upwelling from a secondary plume, which may be possibly the tree branch of the Caroline mantle plume in MTZ. Our results provide new seismological constraints on present and past mantle dynamics in and around the PSP.</div></div>","PeriodicalId":11481,"journal":{"name":"Earth and Planetary Science Letters","volume":"648 ","pages":"Article 119092"},"PeriodicalIF":4.8000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth and Planetary Science Letters","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012821X24005247","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The Philippine Sea Plate (PSP), a region renowned for its intricate history of multi-stage subduction and back-arc extension, encounters difficulties in elucidating its deep seismic structure, primarily due to the sparse distribution of seismic stations. This study uses over 44,086 traces of SS precursors collected from >1,000 seismic stations over 10–20 years period, to image the mantle transition zone (MTZ) beneath the PSP. With the curvelet denoising technique, we provide high-resolution maps of the depths of the 410 km (D410) and 660 km (D660) discontinuities and the thickness of the MTZ. Notably, we demonstrate a 10–35 km MTZ thickening extending from the West Philippine Basin to the Shikoku Basin, which may be associated with the thermal effect and dehydration of stagnated slabs in the MTZ. Furthermore, the reflection gap and multiple reflectors were both observed in D410 and D660 beneath the Mariana Trench, which suggests that the vertically subducted Pacific plate transports substantial water and non-olivine components into the MTZ in this area. Additionally, a ∼10–25 km MTZ thinning with an abnormally shallow D660 has been observed beneath the Parece Vela Basin and Caroline Plate in the southern PSP, suggesting the potential existence of thermal upwelling from a secondary plume, which may be possibly the tree branch of the Caroline mantle plume in MTZ. Our results provide new seismological constraints on present and past mantle dynamics in and around the PSP.
期刊介绍:
Earth and Planetary Science Letters (EPSL) is a leading journal for researchers across the entire Earth and planetary sciences community. It publishes concise, exciting, high-impact articles ("Letters") of broad interest. Its focus is on physical and chemical processes, the evolution and general properties of the Earth and planets - from their deep interiors to their atmospheres. EPSL also includes a Frontiers section, featuring invited high-profile synthesis articles by leading experts on timely topics to bring cutting-edge research to the wider community.