Fei Huang , Jiaheng Teng , Yu Zhao , Shangfei Li , Hongjun Lin , Xiang Cai , Meijia Zhang
{"title":"Biochar-driven fouling mitigation in sustainable microalgal-bacterial membrane bioreactors","authors":"Fei Huang , Jiaheng Teng , Yu Zhao , Shangfei Li , Hongjun Lin , Xiang Cai , Meijia Zhang","doi":"10.1016/j.memsci.2024.123427","DOIUrl":null,"url":null,"abstract":"<div><div>Microalgal-bacterial membrane bioreactor (MB-MBR) have emerged as a crucial technology for sustainable wastewater treatment. However, membrane fouling caused by free microalgae remains a major obstacle to their cost-effective operation. This study investigated the impact of biochar addition on membrane fouling in MB-MBR. The findings indicated that biochar significantly reduced membrane fouling, primarily due to the enlargement of floc size and the reduction of soluble microbial products (SMP). Detailed analyses suggested that biochar's adsorptive properties and its effect on decreasing the abundance of algae and bacteria species, such as <em>Proteobacteria</em> and <em>Leptolyngbya</em>, which promote fouling, are key factors. This alteration enhanced specific amino acid metabolic pathways, thereby reducing SMP production and fouling potential. Consequently, adhesion interaction energy of the flocs and membrane fouling were both diminished. This study demonstrated that biochar addition is an effective strategy for mitigating membrane fouling in MB-MBR systems, providing a theoretical foundation for their stable and sustainable operation.</div></div>","PeriodicalId":368,"journal":{"name":"Journal of Membrane Science","volume":"714 ","pages":"Article 123427"},"PeriodicalIF":8.4000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Membrane Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0376738824010214","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Microalgal-bacterial membrane bioreactor (MB-MBR) have emerged as a crucial technology for sustainable wastewater treatment. However, membrane fouling caused by free microalgae remains a major obstacle to their cost-effective operation. This study investigated the impact of biochar addition on membrane fouling in MB-MBR. The findings indicated that biochar significantly reduced membrane fouling, primarily due to the enlargement of floc size and the reduction of soluble microbial products (SMP). Detailed analyses suggested that biochar's adsorptive properties and its effect on decreasing the abundance of algae and bacteria species, such as Proteobacteria and Leptolyngbya, which promote fouling, are key factors. This alteration enhanced specific amino acid metabolic pathways, thereby reducing SMP production and fouling potential. Consequently, adhesion interaction energy of the flocs and membrane fouling were both diminished. This study demonstrated that biochar addition is an effective strategy for mitigating membrane fouling in MB-MBR systems, providing a theoretical foundation for their stable and sustainable operation.
期刊介绍:
The Journal of Membrane Science is a publication that focuses on membrane systems and is aimed at academic and industrial chemists, chemical engineers, materials scientists, and membranologists. It publishes original research and reviews on various aspects of membrane transport, membrane formation/structure, fouling, module/process design, and processes/applications. The journal primarily focuses on the structure, function, and performance of non-biological membranes but also includes papers that relate to biological membranes. The Journal of Membrane Science publishes Full Text Papers, State-of-the-Art Reviews, Letters to the Editor, and Perspectives.