Shuo Li , Shan Wang , Yanxuan Chen , Xianliang Meng , Lin Wang , Junsheng Zhu
{"title":"Facile synthesis of K0.5Mn2O4·1.5H2O/rGO composites with ultrahigh zinc storage properties","authors":"Shuo Li , Shan Wang , Yanxuan Chen , Xianliang Meng , Lin Wang , Junsheng Zhu","doi":"10.1016/j.nxener.2024.100204","DOIUrl":null,"url":null,"abstract":"<div><div>Zinc-ion batteries have drawn much attention due to their good safety and low cost. In this work, a straightforward 1-pot pyrolysis process has been utilized to prepare novel K<sub>0.5</sub>Mn<sub>2</sub>O<sub>4</sub>·1.5H<sub>2</sub>O/rGO (KMrGO) composites. In KMrGO, the layered structure of reduced graphene oxide (rGO) can efficiently improve the electrical conductivity of K<sub>0.5</sub>Mn<sub>2</sub>O<sub>4</sub>·1.5H<sub>2</sub>O, enabling KMrGO to demonstrate high zinc storage performance. Although a very small amount of rGO (∼1.8%) has been introduced, the reversible capacity of KMrGO reaches 230.1 mAh g<sup>−1</sup> after 250 cycles at 0.2 A g<sup>−1</sup>. Even after 1200 cycles at a high current density of 1 A g<sup>−1</sup>, KMrGO remains a good capacity retention of 70.2%. Considering the simple preparation of KMrGO, this method can provide a new route for synthesizing other metal dioxide/rGO composites.</div></div>","PeriodicalId":100957,"journal":{"name":"Next Energy","volume":"6 ","pages":"Article 100204"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Energy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949821X24001091","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Zinc-ion batteries have drawn much attention due to their good safety and low cost. In this work, a straightforward 1-pot pyrolysis process has been utilized to prepare novel K0.5Mn2O4·1.5H2O/rGO (KMrGO) composites. In KMrGO, the layered structure of reduced graphene oxide (rGO) can efficiently improve the electrical conductivity of K0.5Mn2O4·1.5H2O, enabling KMrGO to demonstrate high zinc storage performance. Although a very small amount of rGO (∼1.8%) has been introduced, the reversible capacity of KMrGO reaches 230.1 mAh g−1 after 250 cycles at 0.2 A g−1. Even after 1200 cycles at a high current density of 1 A g−1, KMrGO remains a good capacity retention of 70.2%. Considering the simple preparation of KMrGO, this method can provide a new route for synthesizing other metal dioxide/rGO composites.