Energy flexibility and management software in building clusters: A comprehensive review

Behnam Mohseni-Gharyehsafa , Adamantios Bampoulas , Donal Finn , Fabiano Pallonetto
{"title":"Energy flexibility and management software in building clusters: A comprehensive review","authors":"Behnam Mohseni-Gharyehsafa ,&nbsp;Adamantios Bampoulas ,&nbsp;Donal Finn ,&nbsp;Fabiano Pallonetto","doi":"10.1016/j.nxener.2025.100250","DOIUrl":null,"url":null,"abstract":"<div><div>Electrification of energy use in buildings is a promising strategy for reducing greenhouse gas emissions and facilitating the transition to a carbon-neutral society. Increasing the electrification of building energy demand creates opportunities to leverage energy flexibility for optimizing energy consumption within buildings. However, existing research on energy flexibility in buildings lacks a comprehensive evaluation of software solutions capable of effectively harnessing this potential. This study addresses this gap by conducting a detailed review of 203 commercial and 40 free open-source software tools designed for energy management in buildings and districts. These tools were evaluated based on their ability to manage key aspects of energy flexibility, including demand response, integration with renewable energy systems, scalability, and real-time control. Our analysis reveals that only 20% of commercial software supports robust energy flexibility, compared to 73% of free open-source tools. To guide future software development, this study proposes the following recommendations: (1) enhance scalability to enable deployment in large-scale community buildings, (2) incorporate benchmarking metrics to offer a Pareto front of optimal end-use solutions, (3) include key performance indicators (KPIs), (4) integrate fault detection, tolerance, and diagnostic methods, (5) implement cloud, fog, and edge computing services to improve reliability and operability, (6) ensure greater flexibility in communication, interoperability, and seamless data exchange, and (7) adopt Internet of Things (IoT) and blockchain technologies.</div></div>","PeriodicalId":100957,"journal":{"name":"Next Energy","volume":"8 ","pages":"Article 100250"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Energy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949821X25000134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Electrification of energy use in buildings is a promising strategy for reducing greenhouse gas emissions and facilitating the transition to a carbon-neutral society. Increasing the electrification of building energy demand creates opportunities to leverage energy flexibility for optimizing energy consumption within buildings. However, existing research on energy flexibility in buildings lacks a comprehensive evaluation of software solutions capable of effectively harnessing this potential. This study addresses this gap by conducting a detailed review of 203 commercial and 40 free open-source software tools designed for energy management in buildings and districts. These tools were evaluated based on their ability to manage key aspects of energy flexibility, including demand response, integration with renewable energy systems, scalability, and real-time control. Our analysis reveals that only 20% of commercial software supports robust energy flexibility, compared to 73% of free open-source tools. To guide future software development, this study proposes the following recommendations: (1) enhance scalability to enable deployment in large-scale community buildings, (2) incorporate benchmarking metrics to offer a Pareto front of optimal end-use solutions, (3) include key performance indicators (KPIs), (4) integrate fault detection, tolerance, and diagnostic methods, (5) implement cloud, fog, and edge computing services to improve reliability and operability, (6) ensure greater flexibility in communication, interoperability, and seamless data exchange, and (7) adopt Internet of Things (IoT) and blockchain technologies.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Voltage estimation of layered cathode materials LiMO2 (M=Al, Mn, Co, Ni, Cu, Zn) for lithium-ion batteries by using Compton profiles Enhanced p-doping and efficiency in organic solar cells using Mg and Pd ions at the HTL/PTB7 interface Microbial methanotrophy: Methane capture to biomanufacturing of platform chemicals and fuels Energy flexibility and management software in building clusters: A comprehensive review Thermal management strategies for a portable double slope solar still with energy storage: An experimental study for enhancing the performance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1