Relating Local Structure to Thermoelectric Properties in Pb1–xGexBi2Te4

IF 7.2 2区 材料科学 Q2 CHEMISTRY, PHYSICAL Chemistry of Materials Pub Date : 2024-10-29 DOI:10.1021/acs.chemmater.4c02649
Jinfeng Dong, Yukun Liu, Jue Liu, Lei Hu, Yilin Jiang, Xian Yi Tan, Yuansheng Shi, Dongwang Yang, Kivanc Saglik, Ady Suwardi, Qian Li, Jing-Feng Li, Vinayak P. Dravid, Qingyu Yan, Mercouri G. Kanatzidis
{"title":"Relating Local Structure to Thermoelectric Properties in Pb1–xGexBi2Te4","authors":"Jinfeng Dong, Yukun Liu, Jue Liu, Lei Hu, Yilin Jiang, Xian Yi Tan, Yuansheng Shi, Dongwang Yang, Kivanc Saglik, Ady Suwardi, Qian Li, Jing-Feng Li, Vinayak P. Dravid, Qingyu Yan, Mercouri G. Kanatzidis","doi":"10.1021/acs.chemmater.4c02649","DOIUrl":null,"url":null,"abstract":"Layered compounds have garnered widespread interest owing to their nontrivial physical properties, particularly their potential as thermoelectric materials. We systematically investigated PbBi<sub>2</sub>Te<sub>4</sub>, a compound derived from Bi<sub>2</sub>Te<sub>3</sub> and PbTe. Synchrotron X-ray diffraction and transmission electron microscopy revealed that PbBi<sub>2</sub>Te<sub>4</sub> adopts and maintains the <i>R</i>3̅<i>m</i> phase from 300 to 723 K, without any phase transition. Moreover, neutron pair distribution function analysis confirmed that the short-range local structure was consistent with the high-symmetry <i>R</i>3̅<i>m</i> structure. PbBi<sub>2</sub>Te<sub>4</sub> exhibits a negative Seebeck coefficient, indicating electron-dominated transport. It has a low lattice thermal conductivity (ca. 0.6 Wm<sup>–1</sup>K<sup>–1</sup>) and a ZT value of 0.4 at 573 K. The effects of GeBi<sub>2</sub>Te<sub>4</sub> alloying in PbBi<sub>2</sub>Te<sub>4</sub> (Pb<sub>1–<i>x</i></sub>Ge<sub><i>x</i></sub>Bi<sub>2</sub>Te<sub>4</sub>, where <i>x</i> ranges from 0.0 to 0.6) were also investigated. Due to alloying-induced point defect scattering and the off-centering effects of Ge<sup>2+</sup>, the room-temperature lattice thermal conductivity decreased to 0.55 Wm<sup>–1</sup>K<sup>–1</sup> when <i>x</i> = 0.5. Combined with a maintained weighted mobility (ca. 60 cm<sup>2</sup>V<sup>–1</sup>s<sup>–2</sup>), the room-temperature ZT increased to 0.28. This value could further increase to 0.65 with a reduction in lattice thermal conductivity to its lower-limit value. A high ZT of 1.0 is also predicted for pristine PbBi<sub>2</sub>Te<sub>4</sub> at 473 K, demonstrating its potential as a near-room-temperature thermoelectric system.","PeriodicalId":33,"journal":{"name":"Chemistry of Materials","volume":null,"pages":null},"PeriodicalIF":7.2000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry of Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.chemmater.4c02649","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Layered compounds have garnered widespread interest owing to their nontrivial physical properties, particularly their potential as thermoelectric materials. We systematically investigated PbBi2Te4, a compound derived from Bi2Te3 and PbTe. Synchrotron X-ray diffraction and transmission electron microscopy revealed that PbBi2Te4 adopts and maintains the Rm phase from 300 to 723 K, without any phase transition. Moreover, neutron pair distribution function analysis confirmed that the short-range local structure was consistent with the high-symmetry Rm structure. PbBi2Te4 exhibits a negative Seebeck coefficient, indicating electron-dominated transport. It has a low lattice thermal conductivity (ca. 0.6 Wm–1K–1) and a ZT value of 0.4 at 573 K. The effects of GeBi2Te4 alloying in PbBi2Te4 (Pb1–xGexBi2Te4, where x ranges from 0.0 to 0.6) were also investigated. Due to alloying-induced point defect scattering and the off-centering effects of Ge2+, the room-temperature lattice thermal conductivity decreased to 0.55 Wm–1K–1 when x = 0.5. Combined with a maintained weighted mobility (ca. 60 cm2V–1s–2), the room-temperature ZT increased to 0.28. This value could further increase to 0.65 with a reduction in lattice thermal conductivity to its lower-limit value. A high ZT of 1.0 is also predicted for pristine PbBi2Te4 at 473 K, demonstrating its potential as a near-room-temperature thermoelectric system.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
将 Pb1-xGexBi2Te4 中的局部结构与热电特性联系起来
层状化合物因其非凡的物理性质,尤其是作为热电材料的潜力而受到广泛关注。我们系统地研究了由 Bi2Te3 和 PbTe 衍生的化合物 PbBi2Te4。同步辐射 X 射线衍射和透射电子显微镜显示,PbBi2Te4 在 300 至 723 K 的温度范围内采用并保持 R3̅m 相,没有发生任何相变。此外,中子对分布函数分析证实,短程局部结构与高对称性 R3̅m 结构一致。PbBi2Te4 的塞贝克系数为负值,表明其传输以电子为主。此外,还研究了 PbBi2Te4(Pb1-xGexBi2Te4,其中 x 为 0.0 至 0.6)中 GeBi2Te4 合金的影响。由于合金化引起的点缺陷散射和 Ge2+ 的偏心效应,当 x = 0.5 时,室温晶格热导率下降到 0.55 Wm-1K-1。结合维持加权迁移率(约 60 cm2V-1s-2),室温 ZT 增加到 0.28。随着晶格热导率降低到下限值,该值可进一步增加到 0.65。据预测,原始 PbBi2Te4 在 473 K 时的 ZT 值也高达 1.0,这表明它具有作为近室温热电系统的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemistry of Materials
Chemistry of Materials 工程技术-材料科学:综合
CiteScore
14.10
自引率
5.80%
发文量
929
审稿时长
1.5 months
期刊介绍: The journal Chemistry of Materials focuses on publishing original research at the intersection of materials science and chemistry. The studies published in the journal involve chemistry as a prominent component and explore topics such as the design, synthesis, characterization, processing, understanding, and application of functional or potentially functional materials. The journal covers various areas of interest, including inorganic and organic solid-state chemistry, nanomaterials, biomaterials, thin films and polymers, and composite/hybrid materials. The journal particularly seeks papers that highlight the creation or development of innovative materials with novel optical, electrical, magnetic, catalytic, or mechanical properties. It is essential that manuscripts on these topics have a primary focus on the chemistry of materials and represent a significant advancement compared to prior research. Before external reviews are sought, submitted manuscripts undergo a review process by a minimum of two editors to ensure their appropriateness for the journal and the presence of sufficient evidence of a significant advance that will be of broad interest to the materials chemistry community.
期刊最新文献
Guinier–Preston Zones Featuring PtCu Nanocrystals: Coherency Strain Fields Reshaping the Band Structure for Oxygen Reduction Electrocatalysis Optimal Ti-Substitution in Layered Oxide Cathodes for Na-Ion Batteries Photovoltaic Efficiency Optimization of Electrodeposited MAPbI3 Perovskite: Impact of Ammonium Valeric Acid Iodide Additive Relating Local Structure to Thermoelectric Properties in Pb1–xGexBi2Te4 Onset Reaction Mechanism of Cr and S Poisoning on Perovskite Oxide Surfaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1