{"title":"Onset Reaction Mechanism of Cr and S Poisoning on Perovskite Oxide Surfaces","authors":"Mengren Bill Liu, Bilge Yildiz","doi":"10.1021/acs.chemmater.4c01936","DOIUrl":null,"url":null,"abstract":"Perovskite oxides serve as oxygen electrode materials in solid oxide fuel and electrolysis cells. These compounds are susceptible to poisoning by volatile chromium and sulfur species in the gas environment. The reaction mechanism of chromium and sulfur poisoning on perovskite oxide surfaces as a function of surface chemistry has not been resolved to date. Understanding the role of different surface chemistries in this degradation mechanism can help to guide the engineering of more stable surfaces. In this study, we take a state-of-the-art perovskite oxide (ABO<sub>3</sub>), La<sub>0.6</sub>Sr<sub>0.4</sub>Co<sub>0.2</sub>Fe<sub>0.8</sub>O<sub>3</sub> (LSCF), as a model oxygen electrode material. We investigate the onset of poisoning reactions by CrO<sub>3</sub> and SO<sub>2</sub>, and their activity on different surface terminations of LSCF by density functional theory (DFT) calculations and <i>ab initio</i> molecular dynamics (AIMD) simulations. We find that both CrO<sub>3</sub> and SO<sub>2</sub> molecules bind more strongly onto the AO-terminated surfaces than do the BO<sub>2</sub> surfaces. AO-terminated LSCF surfaces, especially the Sr sites, result in more strongly adsorbed species with reduced mobility at the surface. The adsorption of CrO<sub>3</sub> and SO<sub>2</sub> on Sr sites of an AO-terminated LSCF surface forms atomic coordinations similar to SrCrO<sub>4</sub> and SrSO<sub>4</sub>, thereby serving as nucleation sites for the formation of these secondary phases. We find two physical traits, surface oxygen Bader charge and subsurface oxygen 2p-band center, that correlate with the distinctly different adsorption energies of these species on the AO- and BO<sub>2</sub>-terminated surfaces. This indicates that the electrostatic interaction and charge transfer between the adsorbate and the surface play a major role in the onset of these poisoning reactions on perovskite oxides. The results reveal the role of surface chemistry in affecting the thermodynamics and the kinetics of CrO<sub>3</sub> and SO<sub>2</sub> reactions at perovskite oxide surfaces and inform effective strategies for mitigation.","PeriodicalId":33,"journal":{"name":"Chemistry of Materials","volume":null,"pages":null},"PeriodicalIF":7.2000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry of Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.chemmater.4c01936","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Perovskite oxides serve as oxygen electrode materials in solid oxide fuel and electrolysis cells. These compounds are susceptible to poisoning by volatile chromium and sulfur species in the gas environment. The reaction mechanism of chromium and sulfur poisoning on perovskite oxide surfaces as a function of surface chemistry has not been resolved to date. Understanding the role of different surface chemistries in this degradation mechanism can help to guide the engineering of more stable surfaces. In this study, we take a state-of-the-art perovskite oxide (ABO3), La0.6Sr0.4Co0.2Fe0.8O3 (LSCF), as a model oxygen electrode material. We investigate the onset of poisoning reactions by CrO3 and SO2, and their activity on different surface terminations of LSCF by density functional theory (DFT) calculations and ab initio molecular dynamics (AIMD) simulations. We find that both CrO3 and SO2 molecules bind more strongly onto the AO-terminated surfaces than do the BO2 surfaces. AO-terminated LSCF surfaces, especially the Sr sites, result in more strongly adsorbed species with reduced mobility at the surface. The adsorption of CrO3 and SO2 on Sr sites of an AO-terminated LSCF surface forms atomic coordinations similar to SrCrO4 and SrSO4, thereby serving as nucleation sites for the formation of these secondary phases. We find two physical traits, surface oxygen Bader charge and subsurface oxygen 2p-band center, that correlate with the distinctly different adsorption energies of these species on the AO- and BO2-terminated surfaces. This indicates that the electrostatic interaction and charge transfer between the adsorbate and the surface play a major role in the onset of these poisoning reactions on perovskite oxides. The results reveal the role of surface chemistry in affecting the thermodynamics and the kinetics of CrO3 and SO2 reactions at perovskite oxide surfaces and inform effective strategies for mitigation.
期刊介绍:
The journal Chemistry of Materials focuses on publishing original research at the intersection of materials science and chemistry. The studies published in the journal involve chemistry as a prominent component and explore topics such as the design, synthesis, characterization, processing, understanding, and application of functional or potentially functional materials. The journal covers various areas of interest, including inorganic and organic solid-state chemistry, nanomaterials, biomaterials, thin films and polymers, and composite/hybrid materials. The journal particularly seeks papers that highlight the creation or development of innovative materials with novel optical, electrical, magnetic, catalytic, or mechanical properties. It is essential that manuscripts on these topics have a primary focus on the chemistry of materials and represent a significant advancement compared to prior research. Before external reviews are sought, submitted manuscripts undergo a review process by a minimum of two editors to ensure their appropriateness for the journal and the presence of sufficient evidence of a significant advance that will be of broad interest to the materials chemistry community.