Multifunctional Conductive MOFs Enhance the Photocatalytic Hydrogen Evolution Efficiency of S-Type Ni3(HITP)2/TiO2 Heterojunctions

IF 3.7 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY Langmuir Pub Date : 2024-10-29 DOI:10.1021/acs.langmuir.4c02651
Xiaotian Zhang, Zipeng Jin, Kunting Li, Yisheng Hu, Lei Xu, Baiyan Li
{"title":"Multifunctional Conductive MOFs Enhance the Photocatalytic Hydrogen Evolution Efficiency of S-Type Ni3(HITP)2/TiO2 Heterojunctions","authors":"Xiaotian Zhang, Zipeng Jin, Kunting Li, Yisheng Hu, Lei Xu, Baiyan Li","doi":"10.1021/acs.langmuir.4c02651","DOIUrl":null,"url":null,"abstract":"Despite their high surface area, remarkable porosity, and efficient charge transfer mechanisms, conductive MOFs have found limited utilization within the domain of photocatalysis. In this study, we synthesized a cutting-edge S-type Ni<sub>3</sub>(HITP)<sub>2</sub>/TiO<sub>2</sub> heterojunction photocatalyst exhibiting outstanding light harvesting and prolonged lifetime of photogenerated electrons through an in situ synthesis approach. Compared with TiO<sub>2</sub>, the composite materials not only significantly increase the specific surface area by 4.07 times but also expand the visible light absorption edge from 400 to 1100 nm. The hydrogen production rate of Ti/Ni-3 reached 4.927 mmol·g<sup>–1</sup>·h<sup>–1</sup>, which is 4.51 times that of TiO<sub>2</sub>. The S-type interface charge transfer pathway of the Ni<sub>3</sub>(HITP)<sub>2</sub>/TiO<sub>2</sub> composite material was inferred by band structure, in situ XPS, SPV, and free radical capture, which improves charge separation and extends the carrier lifetime to undergo directional migration driven by an IEF. This is the main reason for the improved photocatalytic performance of Ni<sub>3</sub>(HITP)<sub>2</sub>/TiO<sub>2</sub> composite materials.","PeriodicalId":50,"journal":{"name":"Langmuir","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.langmuir.4c02651","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Despite their high surface area, remarkable porosity, and efficient charge transfer mechanisms, conductive MOFs have found limited utilization within the domain of photocatalysis. In this study, we synthesized a cutting-edge S-type Ni3(HITP)2/TiO2 heterojunction photocatalyst exhibiting outstanding light harvesting and prolonged lifetime of photogenerated electrons through an in situ synthesis approach. Compared with TiO2, the composite materials not only significantly increase the specific surface area by 4.07 times but also expand the visible light absorption edge from 400 to 1100 nm. The hydrogen production rate of Ti/Ni-3 reached 4.927 mmol·g–1·h–1, which is 4.51 times that of TiO2. The S-type interface charge transfer pathway of the Ni3(HITP)2/TiO2 composite material was inferred by band structure, in situ XPS, SPV, and free radical capture, which improves charge separation and extends the carrier lifetime to undergo directional migration driven by an IEF. This is the main reason for the improved photocatalytic performance of Ni3(HITP)2/TiO2 composite materials.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多功能导电 MOFs 提高了 S 型 Ni3(HITP)2/TiO2 异质结的光催化氢气转化效率
尽管导电 MOFs 具有高比表面积、显著的孔隙率和高效的电荷转移机制,但在光催化领域的应用却十分有限。在本研究中,我们通过原位合成方法合成了一种前沿的 S 型 Ni3(HITP)2/TiO2 异质结光催化剂,该催化剂具有出色的光收集能力,并能延长光生电子的寿命。与 TiO2 相比,复合材料不仅将比表面积显著提高了 4.07 倍,还将可见光吸收边沿从 400 纳米扩大到 1100 纳米。Ti/Ni-3 的产氢率达到 4.927 mmol-g-1-h-1,是 TiO2 的 4.51 倍。通过能带结构、原位 XPS、SPV 和自由基捕获推断出了 Ni3(HITP)2/TiO2 复合材料的 S 型界面电荷转移途径,它改善了电荷分离,延长了载流子寿命,使其在 IEF 的驱动下进行定向迁移。这是 Ni3(HITP)2/TiO2 复合材料光催化性能提高的主要原因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Langmuir
Langmuir 化学-材料科学:综合
CiteScore
6.50
自引率
10.30%
发文量
1464
审稿时长
2.1 months
期刊介绍: Langmuir is an interdisciplinary journal publishing articles in the following subject categories: Colloids: surfactants and self-assembly, dispersions, emulsions, foams Interfaces: adsorption, reactions, films, forces Biological Interfaces: biocolloids, biomolecular and biomimetic materials Materials: nano- and mesostructured materials, polymers, gels, liquid crystals Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do? Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*. This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).
期刊最新文献
Introducing Oxygen Vacancies into a WO3 Photoanode through NaH2PO2 Treatment for Efficient Water Splitting. Atomistic Simulations of Hydration and Antibiofouling Behavior of Amphiphilic Polymer Brush Surfaces Functionalized with TMAO and Short Fluorocarbon N, S-Codoped Carbon Quantum Dots with High Inhibition Efficiency: Implications for Corrosion Mitigation of Carbon Steel in Acidic Environments Multifunctional Conductive MOFs Enhance the Photocatalytic Hydrogen Evolution Efficiency of S-Type Ni3(HITP)2/TiO2 Heterojunctions Micro/Nano Hierarchical Dumbbell-like and Micropapillae Structure Improves Light Absorption and Facilitates Anti-icing/Deicing Performance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1