{"title":"Temporal variation in soil erodibility indicators of sloping croplands with different straw-incorporation rates","authors":"","doi":"10.1016/j.still.2024.106340","DOIUrl":null,"url":null,"abstract":"<div><div>Soil and crop characteristics are susceptible to straw-incorporation and can change considerably over time. These changes are likely to lead to variations in the soil structure, aggregate stability, and shear strength, thereby altering the soil erodibility. Currently, the temporal variation in the soil erodibility of sloping croplands affected by straw-incorporation rate (SIR) is unknown. The objectives of this study were to evaluate the temporal variation in soil erodibility using a comprehensive soil erodibility index (CSEI) with different SIRs, and to identify the dominant influencing factors in a small agricultural watershed in a semi-humid region. The CSEI was quantified using soil organic matter (SOM), K factor, structural stability index (SSI), slaking rate (SR), mean weight diameter (MWD), mean number of drop impacts (MND), soil cohesion (Coh), soil penetration resistance (PR), and saturated hydraulic conductivity (Ks). The results demonstrated that nine soil erodibility indicators exhibited different changes over time during each growing season. Over time, SOM, SSI, Coh, and PR increased, whereas Ks decreased. No distinct variation was observed in the K factor. The MND and MWD generally increased and then decreased over time, whereas the SR showed the opposite trend. Soil erodibility indicators were strongly affected by the SIR. MND, MWD, Ks, Coh, SSI, and SOM were positively correlated with SIR, whereas the K factor, PR, and SR were negatively correlated. CSEI under different SIR showed significant differences in fluctuations with temporal variation (p < 0.05). Compared to the control treatment, the mean CSEI was reduced by 21 %, 36 %, 40 %, 53 %, 66 %, and 56 % for straw-incorporation rates of 1.125, 2.25, 4.5, 6.75, 9, and 13.5 t hm<sup>−2</sup>, respectively. The main factors influencing temporal variation in the CSEI were aboveground biomass, root mass density, straw residual mass density (SRD), and straw decomposition amount (SD). The effects of SRD and SD on CSEI were the greatest at 60 d after straw incorporation. Thus, straw-incorporation can effectively reduce soil erosion. For semi-humid regions with high soil organic matter content, the optimal SIR was 9.0 t hm<sup>−2</sup>.</div></div>","PeriodicalId":49503,"journal":{"name":"Soil & Tillage Research","volume":null,"pages":null},"PeriodicalIF":6.1000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil & Tillage Research","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167198724003416","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Soil and crop characteristics are susceptible to straw-incorporation and can change considerably over time. These changes are likely to lead to variations in the soil structure, aggregate stability, and shear strength, thereby altering the soil erodibility. Currently, the temporal variation in the soil erodibility of sloping croplands affected by straw-incorporation rate (SIR) is unknown. The objectives of this study were to evaluate the temporal variation in soil erodibility using a comprehensive soil erodibility index (CSEI) with different SIRs, and to identify the dominant influencing factors in a small agricultural watershed in a semi-humid region. The CSEI was quantified using soil organic matter (SOM), K factor, structural stability index (SSI), slaking rate (SR), mean weight diameter (MWD), mean number of drop impacts (MND), soil cohesion (Coh), soil penetration resistance (PR), and saturated hydraulic conductivity (Ks). The results demonstrated that nine soil erodibility indicators exhibited different changes over time during each growing season. Over time, SOM, SSI, Coh, and PR increased, whereas Ks decreased. No distinct variation was observed in the K factor. The MND and MWD generally increased and then decreased over time, whereas the SR showed the opposite trend. Soil erodibility indicators were strongly affected by the SIR. MND, MWD, Ks, Coh, SSI, and SOM were positively correlated with SIR, whereas the K factor, PR, and SR were negatively correlated. CSEI under different SIR showed significant differences in fluctuations with temporal variation (p < 0.05). Compared to the control treatment, the mean CSEI was reduced by 21 %, 36 %, 40 %, 53 %, 66 %, and 56 % for straw-incorporation rates of 1.125, 2.25, 4.5, 6.75, 9, and 13.5 t hm−2, respectively. The main factors influencing temporal variation in the CSEI were aboveground biomass, root mass density, straw residual mass density (SRD), and straw decomposition amount (SD). The effects of SRD and SD on CSEI were the greatest at 60 d after straw incorporation. Thus, straw-incorporation can effectively reduce soil erosion. For semi-humid regions with high soil organic matter content, the optimal SIR was 9.0 t hm−2.
期刊介绍:
Soil & Tillage Research examines the physical, chemical and biological changes in the soil caused by tillage and field traffic. Manuscripts will be considered on aspects of soil science, physics, technology, mechanization and applied engineering for a sustainable balance among productivity, environmental quality and profitability. The following are examples of suitable topics within the scope of the journal of Soil and Tillage Research:
The agricultural and biosystems engineering associated with tillage (including no-tillage, reduced-tillage and direct drilling), irrigation and drainage, crops and crop rotations, fertilization, rehabilitation of mine spoils and processes used to modify soils. Soil change effects on establishment and yield of crops, growth of plants and roots, structure and erosion of soil, cycling of carbon and nutrients, greenhouse gas emissions, leaching, runoff and other processes that affect environmental quality. Characterization or modeling of tillage and field traffic responses, soil, climate, or topographic effects, soil deformation processes, tillage tools, traction devices, energy requirements, economics, surface and subsurface water quality effects, tillage effects on weed, pest and disease control, and their interactions.