Simon Ian Futerman , Yafit Cohen , Yael Laor , Eli Argaman , Shlomi Aharon , Gil Eshel
{"title":"Assessing field-scale rill erosion mitigation by cover crops in arable land using drone image analysis","authors":"Simon Ian Futerman , Yafit Cohen , Yael Laor , Eli Argaman , Shlomi Aharon , Gil Eshel","doi":"10.1016/j.still.2024.106341","DOIUrl":null,"url":null,"abstract":"<div><div>Cover crops (CC) effectively reduce soil erosion, a significant threat to farmers and the environment. Yet, there is lack of data quantifying their effect on rill erosion in the field scale. The major objective of this study was to use UAV-RGB images to estimate the effects of CC on rill erosion in the field scale and to characterize rill parameters in areas with and without CC. Images were collected from a 20-ha field in the \"Model Farm for Sustainable Agriculture\", consisting of plots with and without CC. Images were captured 33 days after CC sowing and following substantial rainfall events that formed three prominent rills. Following the elimination of vegetation pixels, structure from motion algorithm was used to generate a post-erosion digital surface model (DSM) and a baseline DSM simulating the pre-erosion soil surface (DSM <sub>reconstructed baseline)</sub>. Change-detection analysis revealed that CC significantly reduced rill erosion. Average soil loss per m<sup>2</sup> was 48 %, 58 %, and 29 % lower in CC compared to bare soil plots in the three studied rills. Additionally, rill maximum depth was 74 %, 74 %, and 24 %, and cross-sectional surface area was 67 %, 87 %, and 43 % lower in CC, compared to bare soil plots. The findings highlight CC's effectiveness in mitigating field-scale rill erosion even in their early growth stages. However, creating a DSM <sub>reconstructed baseline</sub> in CC plots is currently confined to partial CC vegetation coverage (leaving enough soil pixels visible), necessitating additional studies to determine the maximal coverage that won't compromise accuracy. Further assessments of the methods' quantitative accuracy require studies incorporating extensive ground truth data.</div></div>","PeriodicalId":49503,"journal":{"name":"Soil & Tillage Research","volume":"246 ","pages":"Article 106341"},"PeriodicalIF":6.1000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil & Tillage Research","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167198724003428","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Cover crops (CC) effectively reduce soil erosion, a significant threat to farmers and the environment. Yet, there is lack of data quantifying their effect on rill erosion in the field scale. The major objective of this study was to use UAV-RGB images to estimate the effects of CC on rill erosion in the field scale and to characterize rill parameters in areas with and without CC. Images were collected from a 20-ha field in the "Model Farm for Sustainable Agriculture", consisting of plots with and without CC. Images were captured 33 days after CC sowing and following substantial rainfall events that formed three prominent rills. Following the elimination of vegetation pixels, structure from motion algorithm was used to generate a post-erosion digital surface model (DSM) and a baseline DSM simulating the pre-erosion soil surface (DSM reconstructed baseline). Change-detection analysis revealed that CC significantly reduced rill erosion. Average soil loss per m2 was 48 %, 58 %, and 29 % lower in CC compared to bare soil plots in the three studied rills. Additionally, rill maximum depth was 74 %, 74 %, and 24 %, and cross-sectional surface area was 67 %, 87 %, and 43 % lower in CC, compared to bare soil plots. The findings highlight CC's effectiveness in mitigating field-scale rill erosion even in their early growth stages. However, creating a DSM reconstructed baseline in CC plots is currently confined to partial CC vegetation coverage (leaving enough soil pixels visible), necessitating additional studies to determine the maximal coverage that won't compromise accuracy. Further assessments of the methods' quantitative accuracy require studies incorporating extensive ground truth data.
期刊介绍:
Soil & Tillage Research examines the physical, chemical and biological changes in the soil caused by tillage and field traffic. Manuscripts will be considered on aspects of soil science, physics, technology, mechanization and applied engineering for a sustainable balance among productivity, environmental quality and profitability. The following are examples of suitable topics within the scope of the journal of Soil and Tillage Research:
The agricultural and biosystems engineering associated with tillage (including no-tillage, reduced-tillage and direct drilling), irrigation and drainage, crops and crop rotations, fertilization, rehabilitation of mine spoils and processes used to modify soils. Soil change effects on establishment and yield of crops, growth of plants and roots, structure and erosion of soil, cycling of carbon and nutrients, greenhouse gas emissions, leaching, runoff and other processes that affect environmental quality. Characterization or modeling of tillage and field traffic responses, soil, climate, or topographic effects, soil deformation processes, tillage tools, traction devices, energy requirements, economics, surface and subsurface water quality effects, tillage effects on weed, pest and disease control, and their interactions.