Tuning of the mechanical properties of a laser powder bed fused eutectic high entropy alloy Ni30Co30Cr10Fe10Al18W2 through heat treatment

IF 6.1 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Science and Engineering: A Pub Date : 2024-10-28 DOI:10.1016/j.msea.2024.147469
Yiwei Yu , Yakai Zhao , Kai Feng , Rong Chen , Bolun Han , Kaifeng Ji , Meng Qin , Zhuguo Li , Upadrasta Ramamurty
{"title":"Tuning of the mechanical properties of a laser powder bed fused eutectic high entropy alloy Ni30Co30Cr10Fe10Al18W2 through heat treatment","authors":"Yiwei Yu ,&nbsp;Yakai Zhao ,&nbsp;Kai Feng ,&nbsp;Rong Chen ,&nbsp;Bolun Han ,&nbsp;Kaifeng Ji ,&nbsp;Meng Qin ,&nbsp;Zhuguo Li ,&nbsp;Upadrasta Ramamurty","doi":"10.1016/j.msea.2024.147469","DOIUrl":null,"url":null,"abstract":"<div><div>Eutectic high entropy alloys (EHEA) with an exceptional combination of strength and ductility are promising candidates as advanced structural materials. However, achieving an optimal balance between the properties in additively manufactured EHEAs is an outstanding challenge. In this work, Ni<sub>30</sub>Co<sub>30</sub>Cr<sub>10</sub>Fe<sub>10</sub>Al<sub>18</sub>W<sub>2</sub> EHEA was additively manufactured using the laser powder bed fusion (LPBF) technique. In the as-fabricated state, it exhibits a dual-phase nano-lamellar structure consisting of FCC/L1<sub>2</sub> and B2 phases. Post-fabrication heat treatments were explored for modulating microstructure and, in turn, enhancing the mechanical properties, so as to achieve an optimum balance between strength and ductility. Upon heat treatment at 750 °C for 1 h, part of the B2 phase transformed into FCC, with the appearance of the tungsten-rich precipitates inside the B2 phase. The average interlayer spacing of the FCC/L1<sub>2</sub> lamellae increased to 124 nm, while that of B2 lamellae decreased to 86 nm, resulting in an alloy with an ultimate tensile strength (UTS) of 1811 MPa, although the strain to failure (ε<sub>f</sub>) decreased to 2 %. Upon increasing the heat treatment temperature to 1000 °C, the average interlayer spacings of the FCC and B2 phases increased to 210 and 187 nm, respectively, which resulted in a more balanced mechanical behavior with UTS and ε<sub>f</sub> of 1332 MPa and 9.3 %, respectively. This study provides an effective approach for microstructural modulation and enhancement of mechanical properties of LPBF fabricated EHEA via post-fabrication heat treatment, offering insights for developing future high-performance alloys for advanced structural applications.</div></div>","PeriodicalId":385,"journal":{"name":"Materials Science and Engineering: A","volume":"918 ","pages":"Article 147469"},"PeriodicalIF":6.1000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: A","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092150932401400X","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Eutectic high entropy alloys (EHEA) with an exceptional combination of strength and ductility are promising candidates as advanced structural materials. However, achieving an optimal balance between the properties in additively manufactured EHEAs is an outstanding challenge. In this work, Ni30Co30Cr10Fe10Al18W2 EHEA was additively manufactured using the laser powder bed fusion (LPBF) technique. In the as-fabricated state, it exhibits a dual-phase nano-lamellar structure consisting of FCC/L12 and B2 phases. Post-fabrication heat treatments were explored for modulating microstructure and, in turn, enhancing the mechanical properties, so as to achieve an optimum balance between strength and ductility. Upon heat treatment at 750 °C for 1 h, part of the B2 phase transformed into FCC, with the appearance of the tungsten-rich precipitates inside the B2 phase. The average interlayer spacing of the FCC/L12 lamellae increased to 124 nm, while that of B2 lamellae decreased to 86 nm, resulting in an alloy with an ultimate tensile strength (UTS) of 1811 MPa, although the strain to failure (εf) decreased to 2 %. Upon increasing the heat treatment temperature to 1000 °C, the average interlayer spacings of the FCC and B2 phases increased to 210 and 187 nm, respectively, which resulted in a more balanced mechanical behavior with UTS and εf of 1332 MPa and 9.3 %, respectively. This study provides an effective approach for microstructural modulation and enhancement of mechanical properties of LPBF fabricated EHEA via post-fabrication heat treatment, offering insights for developing future high-performance alloys for advanced structural applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过热处理调节激光粉末床熔融共晶高熵合金 Ni30Co30Cr10Fe10Al18W2 的机械性能
共晶高熵合金(EHEA)兼具优异的强度和延展性,有望成为先进的结构材料。然而,如何在添加制造的 EHEA 中实现性能之间的最佳平衡是一项艰巨的挑战。在这项工作中,采用激光粉末床熔融(LPBF)技术添加制造了 Ni30Co30Cr10Fe10Al18W2 EHEA。在制造状态下,它呈现出由 FCC/L12 和 B2 相组成的双相纳米层状结构。为了在强度和延展性之间达到最佳平衡,研究人员探索了制造后的热处理方法,以调节微观结构,进而提高机械性能。在 750 °C 下热处理 1 小时后,部分 B2 相转变为 FCC,B2 相内部出现了富钨沉淀。FCC/L12 片层的平均层间距增至 124 nm,而 B2 片层的平均层间距降至 86 nm,从而使合金的极限抗拉强度 (UTS) 达到 1811 MPa,但破坏应变 (εf)降至 2%。当热处理温度升高到 1000 ℃ 时,FCC 相和 B2 相的平均层间距分别增加到 210 nm 和 187 nm,从而使合金的力学性能更加均衡,其 UTS 和 εf 分别达到 1332 MPa 和 9.3 %。这项研究为通过制造后热处理调节 LPBF 制成的 EHEA 的微结构和提高其力学性能提供了一种有效的方法,为开发未来先进结构应用的高性能合金提供了启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials Science and Engineering: A
Materials Science and Engineering: A 工程技术-材料科学:综合
CiteScore
11.50
自引率
15.60%
发文量
1811
审稿时长
31 days
期刊介绍: Materials Science and Engineering A provides an international medium for the publication of theoretical and experimental studies related to the load-bearing capacity of materials as influenced by their basic properties, processing history, microstructure and operating environment. Appropriate submissions to Materials Science and Engineering A should include scientific and/or engineering factors which affect the microstructure - strength relationships of materials and report the changes to mechanical behavior.
期刊最新文献
Effects of σ phase embrittlement and Al addition on the ductile-brittle transition in super ferritic stainless steels Precipitation and TRIP enhanced spallation resistance of additive manufactured M350 steel Thermo-mechanical response and form-stability of a fully metallic composite phase change material: Dilatometric tests and finite element analysis A novel strategy for preparing gradient grained Mg alloy by normal extrusion process The effects of loading direction on the dynamic impact response of additively manufactured M350 maraging steel-Al0.5CoCrFeNi1.5 hybrid plates
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1