Ling-Yun Du , Hui-Hu Lu , Ze-Zhou Xing , Yi-Nan Wang , Jian-Shan Han , Yong-Zou
{"title":"Effects of σ phase embrittlement and Al addition on the ductile-brittle transition in super ferritic stainless steels","authors":"Ling-Yun Du , Hui-Hu Lu , Ze-Zhou Xing , Yi-Nan Wang , Jian-Shan Han , Yong-Zou","doi":"10.1016/j.msea.2024.147564","DOIUrl":null,"url":null,"abstract":"<div><div>The precipitation evolution and mechanical behaviour of Al-modified and Al-free super ferritic stainless steels (SFSSs) subjected to hot-rolling and isothermal aging at 850 °C were investigated comparatively. Experimental results revealed that hot-rolled samples devoid of Al exhibited elongated fibre microstructure including many sub-grain boundaries and shear bands, whereas a surface recrystallization layer was observed in Al-modified samples. During isothermal aging, σ, χ, and Laves phases were observed in Al-free samples, whereas primarily Laves phases and a small σ phase were identified in 1.0 wt%Al samples. Rolling deformation accelerated the σ phase precipitation kinetic, whereas the addition of Al inhibited σ phase precipitation and promoted Laves-phase precipitation. The bulky σ phase precipitation caused the cleavage fracture in SFSSs owing to the high critical resolved shear stress for dislocation glide on {110}<001>, {100}<001>, {100}<010>, and {111}<0-11> slip systems and the easy crack initiation and propagation in the σ phase during tensile test. Despite being aged for 16 h, Al-modified SFSSs exhibited a significant elongation of 22.6 %. This study highlights that Al addition would facilitate not only the low-temperature hot rolling of SFSSs but also SFSS production without the need for solution treatment prior to cold rolling, thereby offering a promising short-process approach for industrial manufacturing.</div></div>","PeriodicalId":385,"journal":{"name":"Materials Science and Engineering: A","volume":"920 ","pages":"Article 147564"},"PeriodicalIF":6.1000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: A","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921509324014953","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The precipitation evolution and mechanical behaviour of Al-modified and Al-free super ferritic stainless steels (SFSSs) subjected to hot-rolling and isothermal aging at 850 °C were investigated comparatively. Experimental results revealed that hot-rolled samples devoid of Al exhibited elongated fibre microstructure including many sub-grain boundaries and shear bands, whereas a surface recrystallization layer was observed in Al-modified samples. During isothermal aging, σ, χ, and Laves phases were observed in Al-free samples, whereas primarily Laves phases and a small σ phase were identified in 1.0 wt%Al samples. Rolling deformation accelerated the σ phase precipitation kinetic, whereas the addition of Al inhibited σ phase precipitation and promoted Laves-phase precipitation. The bulky σ phase precipitation caused the cleavage fracture in SFSSs owing to the high critical resolved shear stress for dislocation glide on {110}<001>, {100}<001>, {100}<010>, and {111}<0-11> slip systems and the easy crack initiation and propagation in the σ phase during tensile test. Despite being aged for 16 h, Al-modified SFSSs exhibited a significant elongation of 22.6 %. This study highlights that Al addition would facilitate not only the low-temperature hot rolling of SFSSs but also SFSS production without the need for solution treatment prior to cold rolling, thereby offering a promising short-process approach for industrial manufacturing.
期刊介绍:
Materials Science and Engineering A provides an international medium for the publication of theoretical and experimental studies related to the load-bearing capacity of materials as influenced by their basic properties, processing history, microstructure and operating environment. Appropriate submissions to Materials Science and Engineering A should include scientific and/or engineering factors which affect the microstructure - strength relationships of materials and report the changes to mechanical behavior.