Ying Guo , Wen-quan Li , Xin-gang Liu , Kai-yao Wang , Chao Zhang
{"title":"Interfacial microstructure and synergistic enhancement mechanism of symmetric gradient SiCp-reinforced aluminum matrix sandwich structure","authors":"Ying Guo , Wen-quan Li , Xin-gang Liu , Kai-yao Wang , Chao Zhang","doi":"10.1016/j.msea.2024.147452","DOIUrl":null,"url":null,"abstract":"<div><div>Inspired by the biological sandwich structure to achieve excellent mechanical properties with both high strength and high ductility, the symmetric gradient silicon carbide particles (SiCp) reinforced aluminum (Al) composites, consisting of 10 % SiCp/Al-3% SiCp/Al-Al-3% SiCp/Al-10 % SiCp/Al, was fabricated using spark plasma sintering technology. The flat interface was achieved through hot rolling, significantly improving the bonding of interlayers. The differences in SiCp content among layers led to distinct evolution patterns in microstructure. In the pure Al layer, a notable continuous recrystallization mechanism was observed, while in the 3 % SiCp/Al and 10 % SiCp/Al layers, the recrystallization mechanism was nucleation-growth. The transmission electron microscope results indicated that the hindrance of dislocation motion at the interlayer interface and SiCp-Al interface enhanced the dislocation density, thereby improving its plastic deformation capability. On the other hand, the deflection and passivation of cracks at the interlayer interface significantly improves toughness. The differences intragranular strain among layers were most pronounced at the interlayer interfaces, leading to them becoming the stress concentration zone. Uncoordinated plastic deformation leads to sequential failure of layers, vertical cracks first occurred in the 10 % SiCp/Al layer, then propagated towards the interlayer interface and the 3 % SiCp/Al layer, respectively.</div></div>","PeriodicalId":385,"journal":{"name":"Materials Science and Engineering: A","volume":"918 ","pages":"Article 147452"},"PeriodicalIF":6.1000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: A","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921509324013832","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Inspired by the biological sandwich structure to achieve excellent mechanical properties with both high strength and high ductility, the symmetric gradient silicon carbide particles (SiCp) reinforced aluminum (Al) composites, consisting of 10 % SiCp/Al-3% SiCp/Al-Al-3% SiCp/Al-10 % SiCp/Al, was fabricated using spark plasma sintering technology. The flat interface was achieved through hot rolling, significantly improving the bonding of interlayers. The differences in SiCp content among layers led to distinct evolution patterns in microstructure. In the pure Al layer, a notable continuous recrystallization mechanism was observed, while in the 3 % SiCp/Al and 10 % SiCp/Al layers, the recrystallization mechanism was nucleation-growth. The transmission electron microscope results indicated that the hindrance of dislocation motion at the interlayer interface and SiCp-Al interface enhanced the dislocation density, thereby improving its plastic deformation capability. On the other hand, the deflection and passivation of cracks at the interlayer interface significantly improves toughness. The differences intragranular strain among layers were most pronounced at the interlayer interfaces, leading to them becoming the stress concentration zone. Uncoordinated plastic deformation leads to sequential failure of layers, vertical cracks first occurred in the 10 % SiCp/Al layer, then propagated towards the interlayer interface and the 3 % SiCp/Al layer, respectively.
期刊介绍:
Materials Science and Engineering A provides an international medium for the publication of theoretical and experimental studies related to the load-bearing capacity of materials as influenced by their basic properties, processing history, microstructure and operating environment. Appropriate submissions to Materials Science and Engineering A should include scientific and/or engineering factors which affect the microstructure - strength relationships of materials and report the changes to mechanical behavior.