An improved tidal prediction method using meteorological parameters and historical residual water levels

IF 4.3 2区 工程技术 Q1 ENGINEERING, OCEAN Applied Ocean Research Pub Date : 2024-10-29 DOI:10.1016/j.apor.2024.104289
Yuewen Sun , Ruifu Wang , Chao Qi , Jun Xu , Zejie Tu , Fanlin Yang
{"title":"An improved tidal prediction method using meteorological parameters and historical residual water levels","authors":"Yuewen Sun ,&nbsp;Ruifu Wang ,&nbsp;Chao Qi ,&nbsp;Jun Xu ,&nbsp;Zejie Tu ,&nbsp;Fanlin Yang","doi":"10.1016/j.apor.2024.104289","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate water levels information is essential for ocean and coastal management. Water levels are categorized into astronomical tides and residual water levels. The temporal and spatial continuity of residual water levels is influenced by a diverse set of factors. These complex influences pose challenges to achieving precise water level predictions. The TidalMet-HR method is proposed. By feeding wind speed, wind direction, atmospheric pressure, and historical residual water level data into a bidirectional long short-term memory network (Bi-LSTM), we determine the optimal network structure using Bayesian hyper parameters. Subsequently, we integrate astronomical tides with the predicted residual water levels to produce highly accurate future water level forecasts. To evaluate the performance of TidalMet-HR, the water level data of four tidal stations were analyzed. The results indicate that the TidalMet-HR method achieves water level prediction accuracy values within 5 cm and maintains limit errors below 10 cm for the next 36 h. Comparatively, the water level prediction errors at the four stations are reduced by 24.0% (compared to LSTM) when utilizing other artificial intelligence-based forecasting methods (e.g., BP, an RBF, and LSTM). These results certify the TidalMet-HR method as a significant benchmark for achieving precise tidal forecasting.</div></div>","PeriodicalId":8261,"journal":{"name":"Applied Ocean Research","volume":"153 ","pages":"Article 104289"},"PeriodicalIF":4.3000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Ocean Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141118724004103","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, OCEAN","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate water levels information is essential for ocean and coastal management. Water levels are categorized into astronomical tides and residual water levels. The temporal and spatial continuity of residual water levels is influenced by a diverse set of factors. These complex influences pose challenges to achieving precise water level predictions. The TidalMet-HR method is proposed. By feeding wind speed, wind direction, atmospheric pressure, and historical residual water level data into a bidirectional long short-term memory network (Bi-LSTM), we determine the optimal network structure using Bayesian hyper parameters. Subsequently, we integrate astronomical tides with the predicted residual water levels to produce highly accurate future water level forecasts. To evaluate the performance of TidalMet-HR, the water level data of four tidal stations were analyzed. The results indicate that the TidalMet-HR method achieves water level prediction accuracy values within 5 cm and maintains limit errors below 10 cm for the next 36 h. Comparatively, the water level prediction errors at the four stations are reduced by 24.0% (compared to LSTM) when utilizing other artificial intelligence-based forecasting methods (e.g., BP, an RBF, and LSTM). These results certify the TidalMet-HR method as a significant benchmark for achieving precise tidal forecasting.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用气象参数和历史残余水位的改进型潮汐预测方法
准确的水位信息对海洋和海岸管理至关重要。水位分为天文潮汐和残余水位。残余水位在时间和空间上的连续性受到多种因素的影响。这些复杂的影响因素为实现精确的水位预测带来了挑战。我们提出了 TidalMet-HR 方法。通过将风速、风向、大气压力和历史残余水位数据输入双向长短期记忆网络(Bi-LSTM),我们利用贝叶斯超参数确定了最佳网络结构。随后,我们将天文潮汐与预测的残余水位整合在一起,生成高精度的未来水位预测。为了评估 TidalMet-HR 的性能,我们分析了四个潮汐站的水位数据。结果表明,TidalMet-HR 方法的水位预测精度值在 5 厘米以内,并在接下来的 36 小时内将极限误差保持在 10 厘米以下。相比之下,使用其他基于人工智能的预测方法(如 BP、RBF 和 LSTM)时,四个站点的水位预测误差减少了 24.0%(与 LSTM 相比)。这些结果证明 TidalMet-HR 方法是实现精确潮汐预报的重要基准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Ocean Research
Applied Ocean Research 地学-工程:大洋
CiteScore
8.70
自引率
7.00%
发文量
316
审稿时长
59 days
期刊介绍: The aim of Applied Ocean Research is to encourage the submission of papers that advance the state of knowledge in a range of topics relevant to ocean engineering.
期刊最新文献
Editorial Board Corrigendum to “Wave Energy Potential and the Role of Extreme Events on South America's Coasts. A Regional Frequency Analysis” [Applied Ocean Research, Volumen 153, December 2024] Evaluation of wave-induced flow through marine porous media accounting for transition of seepage properties across multiple flow regimes Numerical study on 2:1 nonlinear parametric resonant responses of a Spar buoy in waves An integrated system theoretic accident model and process (STAMP)-Bayesian network (BN) for safety analysis of water mist system on tanker ships
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1