Industrialization challenges for sulfide-based all solid state battery

IF 15 1区 工程技术 Q1 ENERGY & FUELS Etransportation Pub Date : 2024-10-23 DOI:10.1016/j.etran.2024.100371
Yujing Wu , Ziqi Zhang , Qinggang Zhang , Zhaoshuai Zhang , Jiawei Li , Ming Liu , Hong Li , Liquan Chen , Fan Wu
{"title":"Industrialization challenges for sulfide-based all solid state battery","authors":"Yujing Wu ,&nbsp;Ziqi Zhang ,&nbsp;Qinggang Zhang ,&nbsp;Zhaoshuai Zhang ,&nbsp;Jiawei Li ,&nbsp;Ming Liu ,&nbsp;Hong Li ,&nbsp;Liquan Chen ,&nbsp;Fan Wu","doi":"10.1016/j.etran.2024.100371","DOIUrl":null,"url":null,"abstract":"<div><div>All-solid-state battery(ASSB) is the most promising solution for next-generation energy-storage device due to its high energy density, fast charging capability, enhanced safety, wide operating temperature range and long cycle life. Although great efforts and breakthroughs have been made in recent years, many challenges still exist for its industrialization. This perspective aims to summarize the most critical challenges in mass production of ASSB to fully release its potential and facilitate the arrival of a more sustainable future.</div></div>","PeriodicalId":36355,"journal":{"name":"Etransportation","volume":null,"pages":null},"PeriodicalIF":15.0000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Etransportation","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590116824000614","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

All-solid-state battery(ASSB) is the most promising solution for next-generation energy-storage device due to its high energy density, fast charging capability, enhanced safety, wide operating temperature range and long cycle life. Although great efforts and breakthroughs have been made in recent years, many challenges still exist for its industrialization. This perspective aims to summarize the most critical challenges in mass production of ASSB to fully release its potential and facilitate the arrival of a more sustainable future.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
硫化物全固态电池的产业化挑战
全固态电池(ASSB)具有能量密度高、充电速度快、安全性高、工作温度范围宽、循环寿命长等优点,是下一代储能设备最有前途的解决方案。虽然近年来已取得了巨大的努力和突破,但其产业化仍面临许多挑战。本视角旨在总结 ASSB 大规模生产过程中面临的最关键挑战,以充分释放其潜力,推动实现更可持续的未来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Etransportation
Etransportation Engineering-Automotive Engineering
CiteScore
19.80
自引率
12.60%
发文量
57
审稿时长
39 days
期刊介绍: eTransportation is a scholarly journal that aims to advance knowledge in the field of electric transportation. It focuses on all modes of transportation that utilize electricity as their primary source of energy, including electric vehicles, trains, ships, and aircraft. The journal covers all stages of research, development, and testing of new technologies, systems, and devices related to electrical transportation. The journal welcomes the use of simulation and analysis tools at the system, transport, or device level. Its primary emphasis is on the study of the electrical and electronic aspects of transportation systems. However, it also considers research on mechanical parts or subsystems of vehicles if there is a clear interaction with electrical or electronic equipment. Please note that this journal excludes other aspects such as sociological, political, regulatory, or environmental factors from its scope.
期刊最新文献
Explosion characteristics of two-phase ejecta from large-capacity lithium iron phosphate batteries Deep learning driven battery voltage-capacity curve prediction utilizing short-term relaxation voltage Experimental analysis and optimal control of temperature with adaptive control objective for fuel cells Advanced data-driven fault diagnosis in lithium-ion battery management systems for electric vehicles: Progress, challenges, and future perspectives Trustworthy V2G scheduling and energy trading: A blockchain-based framework
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1