Experimental studies on penetration process of high-speed water-jet into ballistic gelatin

IF 1.7 4区 医学 Q3 ENGINEERING, BIOMEDICAL Medical Engineering & Physics Pub Date : 2024-10-16 DOI:10.1016/j.medengphy.2024.104250
Li Liu , XiaoYi Yang , PengFei Wang , Yu Huang , Xing Huang
{"title":"Experimental studies on penetration process of high-speed water-jet into ballistic gelatin","authors":"Li Liu ,&nbsp;XiaoYi Yang ,&nbsp;PengFei Wang ,&nbsp;Yu Huang ,&nbsp;Xing Huang","doi":"10.1016/j.medengphy.2024.104250","DOIUrl":null,"url":null,"abstract":"<div><div>To reveal the penetration mechanism and present the penetration characteristics of high-speed micro-jet with injection volume larger than 0.3 mL into soft tissue, the present study conducted experimental research on high-speed water-jet penetration into ballistic gelatin. The free jet dynamics of an air-powered needle-free injector that can emit up to 1.27 mL of liquid at once and the penetration dynamics were visualized to reveal the details of the penetration process. In the early unstable stage, the jet is emitted in the form of pulses, and the first jet pulse can rapidly generate an initial slender channel in gelatin in a very short time. In the subsequent stable stage, energy input produces dispersion and further increases the penetration depth slowly. Changing the driving pressure by the power source mainly changes the penetration depth increment by dispersion; while changing the nozzle diameter mainly affects the penetration depth in the initial stage. The central position of the dispersion area in the injection direction was firstly defined in the present work and it was found that an approximate linear relationship between this position and the maximum penetration depth exits for different nozzle diameters and driving pressures when injecting the same liquid dose. These research results can provide a basis for a thorough understanding of the penetration characteristics of high-speed micro-jet with injection volume larger than 0.3 mL into soft tissue, as well as the design and operation of the air-powered needle-free injector.</div></div>","PeriodicalId":49836,"journal":{"name":"Medical Engineering & Physics","volume":"133 ","pages":"Article 104250"},"PeriodicalIF":1.7000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Engineering & Physics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350453324001516","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

To reveal the penetration mechanism and present the penetration characteristics of high-speed micro-jet with injection volume larger than 0.3 mL into soft tissue, the present study conducted experimental research on high-speed water-jet penetration into ballistic gelatin. The free jet dynamics of an air-powered needle-free injector that can emit up to 1.27 mL of liquid at once and the penetration dynamics were visualized to reveal the details of the penetration process. In the early unstable stage, the jet is emitted in the form of pulses, and the first jet pulse can rapidly generate an initial slender channel in gelatin in a very short time. In the subsequent stable stage, energy input produces dispersion and further increases the penetration depth slowly. Changing the driving pressure by the power source mainly changes the penetration depth increment by dispersion; while changing the nozzle diameter mainly affects the penetration depth in the initial stage. The central position of the dispersion area in the injection direction was firstly defined in the present work and it was found that an approximate linear relationship between this position and the maximum penetration depth exits for different nozzle diameters and driving pressures when injecting the same liquid dose. These research results can provide a basis for a thorough understanding of the penetration characteristics of high-speed micro-jet with injection volume larger than 0.3 mL into soft tissue, as well as the design and operation of the air-powered needle-free injector.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高速水射流对弹道明胶渗透过程的实验研究
为了揭示注射量大于 0.3 mL 的高速微射流对软组织的渗透机理并呈现其渗透特性,本研究对高速水射流渗透弹道明胶进行了实验研究。通过对一次性可喷射 1.27 mL 液体的空气动力无针注射器的自由射流动力学和渗透动力学进行可视化研究,揭示了渗透过程的细节。在早期的不稳定阶段,射流以脉冲形式喷出,第一个射流脉冲能在极短的时间内迅速在明胶中生成一个初始细长通道。在随后的稳定阶段,能量输入产生分散,并进一步缓慢增加穿透深度。改变动力源的驱动压力主要是通过分散改变穿透深度的增加;而改变喷嘴直径主要影响初始阶段的穿透深度。本研究首次确定了分散区域在喷射方向上的中心位置,并发现在喷射相同剂量的液体时,不同喷嘴直径和驱动压力下该位置与最大穿透深度之间存在近似线性关系。这些研究成果为深入了解注射量大于 0.3 mL 的高速微射流在软组织中的穿透特性以及气动无针注射器的设计和操作提供了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Medical Engineering & Physics
Medical Engineering & Physics 工程技术-工程:生物医学
CiteScore
4.30
自引率
4.50%
发文量
172
审稿时长
3.0 months
期刊介绍: Medical Engineering & Physics provides a forum for the publication of the latest developments in biomedical engineering, and reflects the essential multidisciplinary nature of the subject. The journal publishes in-depth critical reviews, scientific papers and technical notes. Our focus encompasses the application of the basic principles of physics and engineering to the development of medical devices and technology, with the ultimate aim of producing improvements in the quality of health care.Topics covered include biomechanics, biomaterials, mechanobiology, rehabilitation engineering, biomedical signal processing and medical device development. Medical Engineering & Physics aims to keep both engineers and clinicians abreast of the latest applications of technology to health care.
期刊最新文献
Open laminectomy plus posterolateral fusion versus open laminectomy plus transforaminal lumbar interbody fusion surgical approaches for fusing degenerated L4-L5 segment: A comparative finite element study The effect of the length of chimney's protrusion on the hemodynamics of abdominal aorta stent graft after endovascular aneurysm repair Effect of plantar fascia stiffness on plantar windlass mechanism and arch: Finite element method and dual fluoroscopic imaging system verification An in vitro experimental study on the synergistic pathogenicity analysis of pulsatile tinnitus involving venous flow velocity, sigmoid sinus wall dehiscence and sinus malformation Cadaveric validation of markerless tracking using weightbearing computed tomography versus conventional computed tomography imaging techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1