Yuxuan Xie , Guichen Li , Jun Wu , Jiachen Zhu , Xuemei Cai , Peizuo Zhao , Dan Zhang , Yuan Zhong
{"title":"Injectable self-healing alginate/PEG hydrogels cross-linked via thiol-Michael addition bonds for hemostasis and wound healing","authors":"Yuxuan Xie , Guichen Li , Jun Wu , Jiachen Zhu , Xuemei Cai , Peizuo Zhao , Dan Zhang , Yuan Zhong","doi":"10.1016/j.carbpol.2024.122864","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, an alginate/PEG hydrogel was developed via a thiol-Michael addition reaction between oxidized quinone of catechols on dopamine-grafted sodium alginate (SA-DA) and sulfhydryl groups of 4-arm polyethylene glycol tetra-thiol (4-arm PEG-SH) under mildly basic conditions. Through the formation of thiol-terminated catechol groups, the accompanying oxidized catechols are reduced, significantly strengthening the internal network structure of the hydrogel and improving tissue adhesion. Meanwhile, the hydrogels have excellent self-healing properties due to the dynamic non-covalent bonds between the groups. Adjustment of hydrogel properties by varying the mass ratio of two hydrogel precursors. Due to the high content of thiol-terminated catechol groups, the Gel 3 exhibited good tissue adhesion, rapid self-healing ability, and other multifunctions beneficial to wound healing, including killing of <em>E. coli</em> and <em>S. aureus</em>, rapid hemostasis and promoting migration of L929 cells. The full-thickness skin wound model shows that the hydrogel dressing significantly accelerated wound contraction, with increased granulation tissue thickness, collagen disposition, and enhanced vascularization, thus promoting wound healing. Therefore, the thiol-Michael addition reaction is an effective method for creating multifunctional hydrogels, and the injectable self-healing alginate/PEG hydrogels prepared in this way could be used in the biomedical area as wound healing dressing materials.</div></div>","PeriodicalId":261,"journal":{"name":"Carbohydrate Polymers","volume":"348 ","pages":"Article 122864"},"PeriodicalIF":10.7000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbohydrate Polymers","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0144861724010907","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, an alginate/PEG hydrogel was developed via a thiol-Michael addition reaction between oxidized quinone of catechols on dopamine-grafted sodium alginate (SA-DA) and sulfhydryl groups of 4-arm polyethylene glycol tetra-thiol (4-arm PEG-SH) under mildly basic conditions. Through the formation of thiol-terminated catechol groups, the accompanying oxidized catechols are reduced, significantly strengthening the internal network structure of the hydrogel and improving tissue adhesion. Meanwhile, the hydrogels have excellent self-healing properties due to the dynamic non-covalent bonds between the groups. Adjustment of hydrogel properties by varying the mass ratio of two hydrogel precursors. Due to the high content of thiol-terminated catechol groups, the Gel 3 exhibited good tissue adhesion, rapid self-healing ability, and other multifunctions beneficial to wound healing, including killing of E. coli and S. aureus, rapid hemostasis and promoting migration of L929 cells. The full-thickness skin wound model shows that the hydrogel dressing significantly accelerated wound contraction, with increased granulation tissue thickness, collagen disposition, and enhanced vascularization, thus promoting wound healing. Therefore, the thiol-Michael addition reaction is an effective method for creating multifunctional hydrogels, and the injectable self-healing alginate/PEG hydrogels prepared in this way could be used in the biomedical area as wound healing dressing materials.
期刊介绍:
Carbohydrate Polymers stands as a prominent journal in the glycoscience field, dedicated to exploring and harnessing the potential of polysaccharides with applications spanning bioenergy, bioplastics, biomaterials, biorefining, chemistry, drug delivery, food, health, nanotechnology, packaging, paper, pharmaceuticals, medicine, oil recovery, textiles, tissue engineering, wood, and various aspects of glycoscience.
The journal emphasizes the central role of well-characterized carbohydrate polymers, highlighting their significance as the primary focus rather than a peripheral topic. Each paper must prominently feature at least one named carbohydrate polymer, evident in both citation and title, with a commitment to innovative research that advances scientific knowledge.