Ameni Ben Zineb , Mariem Zakraoui , Imane Bahlouli , Fatma Karray , Asma Ben Salem , Ahmed Mliki , Stephan Declerck , Mahmoud Gargouri
{"title":"Differential recruitment of root bacterial community by inoculated inland spiny and spinless cactus in response to salinity stress","authors":"Ameni Ben Zineb , Mariem Zakraoui , Imane Bahlouli , Fatma Karray , Asma Ben Salem , Ahmed Mliki , Stephan Declerck , Mahmoud Gargouri","doi":"10.1016/j.rhisph.2024.100984","DOIUrl":null,"url":null,"abstract":"<div><div>In the field of innovative challenges, it is essential to incorporate microorganisms into agricultural practices that promote and improve plant growth and health, particularly under conditions of salinity stress. This work elucidated the response of two <em>Opuntia ficus-indica</em> cultivars (spiny, <em>Gialla</em> and spineless, <em>Rossa</em>) inoculated inland with a coastal cactus rhizospheric soil (<em>Opuntia littoralis</em>) under NaCl treatment. The two cultivars reacted differently to salinity stress. The cladodes and roots of the <em>Rossa</em> cultivar were sensitive to salinity and accumulated both Na<sup>+</sup> and Cl<sup>−</sup>. In contrast, the <em>Gialla</em> cultivar showed Na <sup>+</sup> exclusion from the cladodes and root growth was unaffected by salinity. The diversity, richness, and correlation networks of root compartments bacterial communities were mainly determined while the cactus cultivar was subjected to salinity stress. Different subsets of key soil bacteria taxa were selected by the root systems of each cultivar after exposure to salinity. Our results highlight the importance of the rhizosphere of endemic coastal plants in improving plant resistance to salinity stress, particularly in the spiny cultivar compared to the spineless cultivar. The microbiome networks provide solid evidence that each cultivar adapts its bacterial community composition and interactions in response to salinity.</div></div>","PeriodicalId":48589,"journal":{"name":"Rhizosphere","volume":"32 ","pages":"Article 100984"},"PeriodicalIF":3.4000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rhizosphere","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452219824001393","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
In the field of innovative challenges, it is essential to incorporate microorganisms into agricultural practices that promote and improve plant growth and health, particularly under conditions of salinity stress. This work elucidated the response of two Opuntia ficus-indica cultivars (spiny, Gialla and spineless, Rossa) inoculated inland with a coastal cactus rhizospheric soil (Opuntia littoralis) under NaCl treatment. The two cultivars reacted differently to salinity stress. The cladodes and roots of the Rossa cultivar were sensitive to salinity and accumulated both Na+ and Cl−. In contrast, the Gialla cultivar showed Na + exclusion from the cladodes and root growth was unaffected by salinity. The diversity, richness, and correlation networks of root compartments bacterial communities were mainly determined while the cactus cultivar was subjected to salinity stress. Different subsets of key soil bacteria taxa were selected by the root systems of each cultivar after exposure to salinity. Our results highlight the importance of the rhizosphere of endemic coastal plants in improving plant resistance to salinity stress, particularly in the spiny cultivar compared to the spineless cultivar. The microbiome networks provide solid evidence that each cultivar adapts its bacterial community composition and interactions in response to salinity.
RhizosphereAgricultural and Biological Sciences-Agronomy and Crop Science
CiteScore
5.70
自引率
8.10%
发文量
155
审稿时长
29 days
期刊介绍:
Rhizosphere aims to advance the frontier of our understanding of plant-soil interactions. Rhizosphere is a multidisciplinary journal that publishes research on the interactions between plant roots, soil organisms, nutrients, and water. Except carbon fixation by photosynthesis, plants obtain all other elements primarily from soil through roots.
We are beginning to understand how communications at the rhizosphere, with soil organisms and other plant species, affect root exudates and nutrient uptake. This rapidly evolving subject utilizes molecular biology and genomic tools, food web or community structure manipulations, high performance liquid chromatography, isotopic analysis, diverse spectroscopic analytics, tomography and other microscopy, complex statistical and modeling tools.