An innovative method integrating two deep learning networks and hyperparameter optimization for identifying fiber optic temperature measurements in earth-rock dams

IF 4 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Advances in Engineering Software Pub Date : 2024-10-29 DOI:10.1016/j.advengsoft.2024.103802
Lang Xu , Zhiping Wen , Huaizhi Su , Simonetta Cola , Nicola Fabbian , Yanming Feng , Shanshan Yang
{"title":"An innovative method integrating two deep learning networks and hyperparameter optimization for identifying fiber optic temperature measurements in earth-rock dams","authors":"Lang Xu ,&nbsp;Zhiping Wen ,&nbsp;Huaizhi Su ,&nbsp;Simonetta Cola ,&nbsp;Nicola Fabbian ,&nbsp;Yanming Feng ,&nbsp;Shanshan Yang","doi":"10.1016/j.advengsoft.2024.103802","DOIUrl":null,"url":null,"abstract":"<div><div>Since one of the main threats to the safety of earth-rock dams is leakage, its timely and accurate identification is crucial. Distributed fiber optic sensing system (DFOS) is considered as one of the ideal methods for leakage monitoring in earth-rock dams. However, the working conditions of earth-rock dams are complex, and the identification of fiber optic temperature measurements has issues such as low efficiency and high misjudgment rate. For improving the identification efficiency and accuracy of fiber optic temperature measurements in earth-rock dams, a signal identification method integrating least squares generative adversarial network (LSGAN), one-dimensional convolutional neural network (1DCNN), and white shark optimization (WSO) algorithm is presented. Firstly, the LSGAN model is used to augment the signals of different categories to reduce the effect of data set unbalance on the identification result. According to the variation characteristics of fiber optic temperature measurement signals in earth-rock dams, a 1DCNN model is designed to extract signal features for classification. To reduce the blindness in hyperparameter setting of 1DCNN model, the WSO algorithm is introduced to optimize its key hyperparameters, which further enhances the identification accuracy of the model. The new method is applied to a data set specifically acquired with tests on a physical model of an earth-rock dam. The identification accuracy obtained with the new method reaches 99.76 %, which is better than the accuracy of other commonly used identification methods. Upon completion of the pre-training, the new method can fulfill the practical needs of fast identification and has promising applications.</div></div>","PeriodicalId":50866,"journal":{"name":"Advances in Engineering Software","volume":"199 ","pages":"Article 103802"},"PeriodicalIF":4.0000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Engineering Software","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0965997824002096","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Since one of the main threats to the safety of earth-rock dams is leakage, its timely and accurate identification is crucial. Distributed fiber optic sensing system (DFOS) is considered as one of the ideal methods for leakage monitoring in earth-rock dams. However, the working conditions of earth-rock dams are complex, and the identification of fiber optic temperature measurements has issues such as low efficiency and high misjudgment rate. For improving the identification efficiency and accuracy of fiber optic temperature measurements in earth-rock dams, a signal identification method integrating least squares generative adversarial network (LSGAN), one-dimensional convolutional neural network (1DCNN), and white shark optimization (WSO) algorithm is presented. Firstly, the LSGAN model is used to augment the signals of different categories to reduce the effect of data set unbalance on the identification result. According to the variation characteristics of fiber optic temperature measurement signals in earth-rock dams, a 1DCNN model is designed to extract signal features for classification. To reduce the blindness in hyperparameter setting of 1DCNN model, the WSO algorithm is introduced to optimize its key hyperparameters, which further enhances the identification accuracy of the model. The new method is applied to a data set specifically acquired with tests on a physical model of an earth-rock dam. The identification accuracy obtained with the new method reaches 99.76 %, which is better than the accuracy of other commonly used identification methods. Upon completion of the pre-training, the new method can fulfill the practical needs of fast identification and has promising applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
集成两个深度学习网络和超参数优化的创新方法,用于识别土石坝中的光纤温度测量值
土石坝安全的主要威胁之一是渗漏,因此及时准确地识别渗漏至关重要。分布式光纤传感系统(DFOS)被认为是土石坝渗漏监测的理想方法之一。然而,土石坝工况复杂,光纤测温识别存在效率低、误判率高等问题。为提高土石坝光纤测温的识别效率和精度,本文提出了一种集成最小二乘生成对抗网络(LSGAN)、一维卷积神经网络(1DCNN)和白鲨优化算法(WSO)的信号识别方法。首先,利用 LSGAN 模型对不同类别的信号进行增强,以减少数据集不平衡对识别结果的影响。根据土石坝光纤测温信号的变化特征,设计了 1DCNN 模型来提取信号特征进行分类。为减少 1DCNN 模型超参数设置的盲目性,引入 WSO 算法对其关键超参数进行优化,进一步提高了模型的识别精度。新方法被应用于对土石坝物理模型进行测试所获得的数据集。新方法的识别准确率达到 99.76%,优于其他常用识别方法。在完成预训练后,新方法可以满足快速识别的实际需要,具有广阔的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advances in Engineering Software
Advances in Engineering Software 工程技术-计算机:跨学科应用
CiteScore
7.70
自引率
4.20%
发文量
169
审稿时长
37 days
期刊介绍: The objective of this journal is to communicate recent and projected advances in computer-based engineering techniques. The fields covered include mechanical, aerospace, civil and environmental engineering, with an emphasis on research and development leading to practical problem-solving. The scope of the journal includes: • Innovative computational strategies and numerical algorithms for large-scale engineering problems • Analysis and simulation techniques and systems • Model and mesh generation • Control of the accuracy, stability and efficiency of computational process • Exploitation of new computing environments (eg distributed hetergeneous and collaborative computing) • Advanced visualization techniques, virtual environments and prototyping • Applications of AI, knowledge-based systems, computational intelligence, including fuzzy logic, neural networks and evolutionary computations • Application of object-oriented technology to engineering problems • Intelligent human computer interfaces • Design automation, multidisciplinary design and optimization • CAD, CAE and integrated process and product development systems • Quality and reliability.
期刊最新文献
Refined finite element analysis of helical wire ropes under multi-axial dynamic loading An engineering-oriented Shallow-water Hydro-Sediment-Morphodynamic model using the GPU-acceleration and the hybrid LTS/GMaTS method Dimensionality reduction of solution reconstruction methods for a four-point stencil Stress-constrained topology optimization of geometrically nonlinear continuum structures by using parallel computing strategy .A multi-objective search-based approach for position and orientation deviations in assemblies with multiple non-ideal surfaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1