Hao Fan, Feng-Lin Wu, Lu Wang, Shu-Qian Liu, Si-Yuan Liu
{"title":"The role of quantum resources in quantum energy teleportation","authors":"Hao Fan, Feng-Lin Wu, Lu Wang, Shu-Qian Liu, Si-Yuan Liu","doi":"10.1007/s11128-024-04579-4","DOIUrl":null,"url":null,"abstract":"<div><p>Quantum energy teleportation (QET) protocol illustrates that through local operations and classical communication, the local energy of the ground state of a many-body quantum system can be extracted. Unlike classical energy transmission, dissipation effects are greatly reduced in quantum energy teleportation. Energy extraction only requires classical information and local operations about the measurements. Quantum resources play a key role in this protocol, giving QET protocol quantum advantages over classical energy transmission. In this paper, we investigate the role of quantum resources in quantum energy teleportation. We find that quantum resources can improve the energy extraction efficiency of QET, and find the necessary and sufficient conditions for the minimal QET. We construct a quantum circuit for simulation of the minimal QET model and provide the numerical results of QET in Gibbs state and spin-chain system to verify our conclusions.</p></div>","PeriodicalId":746,"journal":{"name":"Quantum Information Processing","volume":"23 11","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Information Processing","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11128-024-04579-4","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Quantum energy teleportation (QET) protocol illustrates that through local operations and classical communication, the local energy of the ground state of a many-body quantum system can be extracted. Unlike classical energy transmission, dissipation effects are greatly reduced in quantum energy teleportation. Energy extraction only requires classical information and local operations about the measurements. Quantum resources play a key role in this protocol, giving QET protocol quantum advantages over classical energy transmission. In this paper, we investigate the role of quantum resources in quantum energy teleportation. We find that quantum resources can improve the energy extraction efficiency of QET, and find the necessary and sufficient conditions for the minimal QET. We construct a quantum circuit for simulation of the minimal QET model and provide the numerical results of QET in Gibbs state and spin-chain system to verify our conclusions.
期刊介绍:
Quantum Information Processing is a high-impact, international journal publishing cutting-edge experimental and theoretical research in all areas of Quantum Information Science. Topics of interest include quantum cryptography and communications, entanglement and discord, quantum algorithms, quantum error correction and fault tolerance, quantum computer science, quantum imaging and sensing, and experimental platforms for quantum information. Quantum Information Processing supports and inspires research by providing a comprehensive peer review process, and broadcasting high quality results in a range of formats. These include original papers, letters, broadly focused perspectives, comprehensive review articles, book reviews, and special topical issues. The journal is particularly interested in papers detailing and demonstrating quantum information protocols for cryptography, communications, computation, and sensing.