Sören Drabesch, Oliver J. Lechtenfeld, Esmira Bibaj, José M. León Ninin, Juan Lezama Pachecco, Scott Fendorf, Britta Planer-Friedrich, Andreas Kappler, E. Marie Muehe
{"title":"Climate induced microbiome alterations increase cadmium bioavailability in agricultural soils with pH below 7","authors":"Sören Drabesch, Oliver J. Lechtenfeld, Esmira Bibaj, José M. León Ninin, Juan Lezama Pachecco, Scott Fendorf, Britta Planer-Friedrich, Andreas Kappler, E. Marie Muehe","doi":"10.1038/s43247-024-01794-w","DOIUrl":null,"url":null,"abstract":"Climate change and metals independently stress soil microbiomes, but their combined effects remain unresolved. Here we show that future climate affects soil cadmium through altered soil microbiome and nutrient cycles, with soil pH as critical factor. In soils with pH<7 and during summer temperatures, future climate increased porewater cadmium, shifting total and potentially active taxonomic microbiome structures. Microbial ammonium oxidation released protons liberating cadmium through cation exchange from mineral surfaces. When porewater cadmium levels became toxic to non-cadmium-tolerant bacteria, microbial activity, and nutrient cycling decreased, reducing carbon and nitrogen emissions. In contrast, pH>7 soil show no climate impacts on cadmium mobilization, though imprints on microbiome structure were apparent. Subsequent nutrient cycling increased under future climate, stimulating soil respiration and nitrous oxide release. These findings underscore complex interactions between climate change and soil contaminants affecting the soil microbiome and its activity and highlights potential impacts on crop production, groundwater quality, and climate feedback. Complex interactions between future climate, soil microbiome, and soil cadmium negatively impact microbial activity and nutrient cycling in soil with pH below 7, which potentially affects crop production, groundwater quality, and climate feedback, according to a series of laboratory experiments conducted with sampled soil.","PeriodicalId":10530,"journal":{"name":"Communications Earth & Environment","volume":null,"pages":null},"PeriodicalIF":8.1000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43247-024-01794-w.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Earth & Environment","FirstCategoryId":"93","ListUrlMain":"https://www.nature.com/articles/s43247-024-01794-w","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Climate change and metals independently stress soil microbiomes, but their combined effects remain unresolved. Here we show that future climate affects soil cadmium through altered soil microbiome and nutrient cycles, with soil pH as critical factor. In soils with pH<7 and during summer temperatures, future climate increased porewater cadmium, shifting total and potentially active taxonomic microbiome structures. Microbial ammonium oxidation released protons liberating cadmium through cation exchange from mineral surfaces. When porewater cadmium levels became toxic to non-cadmium-tolerant bacteria, microbial activity, and nutrient cycling decreased, reducing carbon and nitrogen emissions. In contrast, pH>7 soil show no climate impacts on cadmium mobilization, though imprints on microbiome structure were apparent. Subsequent nutrient cycling increased under future climate, stimulating soil respiration and nitrous oxide release. These findings underscore complex interactions between climate change and soil contaminants affecting the soil microbiome and its activity and highlights potential impacts on crop production, groundwater quality, and climate feedback. Complex interactions between future climate, soil microbiome, and soil cadmium negatively impact microbial activity and nutrient cycling in soil with pH below 7, which potentially affects crop production, groundwater quality, and climate feedback, according to a series of laboratory experiments conducted with sampled soil.
期刊介绍:
Communications Earth & Environment is an open access journal from Nature Portfolio publishing high-quality research, reviews and commentary in all areas of the Earth, environmental and planetary sciences. Research papers published by the journal represent significant advances that bring new insight to a specialized area in Earth science, planetary science or environmental science.
Communications Earth & Environment has a 2-year impact factor of 7.9 (2022 Journal Citation Reports®). Articles published in the journal in 2022 were downloaded 1,412,858 times. Median time from submission to the first editorial decision is 8 days.