High-parametric protein maps reveal the spatial organization in early-developing human lung

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Nature Communications Pub Date : 2024-10-30 DOI:10.1038/s41467-024-53752-x
Sanem Sariyar, Alexandros Sountoulidis, Jan Niklas Hansen, Sergio Marco Salas, Mariya Mardamshina, Anna Martinez Casals, Frederic Ballllosera Navarro, Zaneta Andrusivova, Xiaofei Li, Paulo Czarnewski, Joakim Lundeberg, Sten Linnarsson, Mats Nilsson, Erik Sundström, Christos Samakovlis, Emma Lundberg, Burcu Ayoglu
{"title":"High-parametric protein maps reveal the spatial organization in early-developing human lung","authors":"Sanem Sariyar, Alexandros Sountoulidis, Jan Niklas Hansen, Sergio Marco Salas, Mariya Mardamshina, Anna Martinez Casals, Frederic Ballllosera Navarro, Zaneta Andrusivova, Xiaofei Li, Paulo Czarnewski, Joakim Lundeberg, Sten Linnarsson, Mats Nilsson, Erik Sundström, Christos Samakovlis, Emma Lundberg, Burcu Ayoglu","doi":"10.1038/s41467-024-53752-x","DOIUrl":null,"url":null,"abstract":"<p>The respiratory system, including the lungs, is essential for terrestrial life. While recent research has advanced our understanding of lung development, much still relies on animal models and transcriptome analyses. In this study conducted within the Human Developmental Cell Atlas (HDCA) initiative, we describe the protein-level spatiotemporal organization of the lung during the first trimester of human gestation. Using high-parametric tissue imaging with a 30-plex antibody panel, we analyzed human lung samples from 6 to 13 post-conception weeks, generating data from over 2 million cells across five developmental timepoints. We present a resource detailing spatially resolved cell type composition of the developing human lung, including proliferative states, immune cell patterns, spatial arrangement traits, and their temporal evolution. This represents an extensive single-cell resolved protein-level examination of the developing human lung and provides a valuable resource for further research into the developmental roots of human respiratory health and disease.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":null,"pages":null},"PeriodicalIF":14.7000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-53752-x","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The respiratory system, including the lungs, is essential for terrestrial life. While recent research has advanced our understanding of lung development, much still relies on animal models and transcriptome analyses. In this study conducted within the Human Developmental Cell Atlas (HDCA) initiative, we describe the protein-level spatiotemporal organization of the lung during the first trimester of human gestation. Using high-parametric tissue imaging with a 30-plex antibody panel, we analyzed human lung samples from 6 to 13 post-conception weeks, generating data from over 2 million cells across five developmental timepoints. We present a resource detailing spatially resolved cell type composition of the developing human lung, including proliferative states, immune cell patterns, spatial arrangement traits, and their temporal evolution. This represents an extensive single-cell resolved protein-level examination of the developing human lung and provides a valuable resource for further research into the developmental roots of human respiratory health and disease.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高参数蛋白质图揭示人类早期肺部发育的空间组织结构
包括肺在内的呼吸系统是陆地生命的基本要素。虽然最近的研究推进了我们对肺发育的了解,但大部分研究仍依赖于动物模型和转录组分析。在这项由人类发育细胞图谱(HDCA)计划开展的研究中,我们描述了人类妊娠头三个月肺部蛋白质水平的时空组织。我们利用高参数组织成像和 30 复合物抗体面板,分析了受孕后 6 到 13 周的人类肺部样本,生成了来自五个发育时间点的 200 多万个细胞的数据。我们提供的资源详细描述了发育中的人类肺部的空间分辨细胞类型组成,包括增殖状态、免疫细胞模式、空间排列特征及其时间演变。这是对发育中的人类肺部进行的一次广泛的单细胞分辨蛋白质级检测,为进一步研究人类呼吸系统健康和疾病的发育根源提供了宝贵的资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
期刊最新文献
High-parametric protein maps reveal the spatial organization in early-developing human lung Innate immune control of influenza virus interspecies adaptation via IFITM3 Automated detection and de novo structure modeling of nucleic acids from cryo-EM maps Encoding extracellular modification of artificial cell membranes using engineered self-translocating proteins A large-scale examination of inductive biases shaping high-level visual representation in brains and machines
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1