Automated detection and de novo structure modeling of nucleic acids from cryo-EM maps

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Nature Communications Pub Date : 2024-10-30 DOI:10.1038/s41467-024-53721-4
Tao Li, Hong Cao, Jiahua He, Sheng-You Huang
{"title":"Automated detection and de novo structure modeling of nucleic acids from cryo-EM maps","authors":"Tao Li, Hong Cao, Jiahua He, Sheng-You Huang","doi":"10.1038/s41467-024-53721-4","DOIUrl":null,"url":null,"abstract":"<p>Cryo-electron microscopy (cryo-EM) is one of the most powerful experimental methods for macromolecular structure determination. However, accurate DNA/RNA structure modeling from cryo-EM maps is still challenging especially for protein-DNA/RNA or multi-chain DNA/RNA complexes. Here we propose a deep learning-based method for accurate de novo structure determination of DNA/RNA from cryo-EM maps at &lt;5 Å resolutions, which is referred to as EM2NA. EM2NA is extensively evaluated on a diverse test set of 50 experimental maps at 2.0–5.0 Å resolutions, and compared with state-of-the-art methods including CryoREAD, ModelAngelo, and phenix.map_to_model. On average, EM2NA achieves a residue coverage of 83.15%, C4’ RMSD of 1.06 Å, and sequence recall of 46.86%, which outperforms the existing methods. Moreover, EM2NA is applied to build the DNA/RNA structures with 10 to 5347 nt from an EMDB-wide data set of 263 unmodeled raw maps, demonstrating its ability in the blind model building of DNA/RNA from cryo-EM maps. EM2NA is fast and can normally build a DNA/RNA structure of &lt;500 nt within 10 minutes.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":null,"pages":null},"PeriodicalIF":14.7000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-53721-4","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Cryo-electron microscopy (cryo-EM) is one of the most powerful experimental methods for macromolecular structure determination. However, accurate DNA/RNA structure modeling from cryo-EM maps is still challenging especially for protein-DNA/RNA or multi-chain DNA/RNA complexes. Here we propose a deep learning-based method for accurate de novo structure determination of DNA/RNA from cryo-EM maps at <5 Å resolutions, which is referred to as EM2NA. EM2NA is extensively evaluated on a diverse test set of 50 experimental maps at 2.0–5.0 Å resolutions, and compared with state-of-the-art methods including CryoREAD, ModelAngelo, and phenix.map_to_model. On average, EM2NA achieves a residue coverage of 83.15%, C4’ RMSD of 1.06 Å, and sequence recall of 46.86%, which outperforms the existing methods. Moreover, EM2NA is applied to build the DNA/RNA structures with 10 to 5347 nt from an EMDB-wide data set of 263 unmodeled raw maps, demonstrating its ability in the blind model building of DNA/RNA from cryo-EM maps. EM2NA is fast and can normally build a DNA/RNA structure of <500 nt within 10 minutes.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从低温电子显微镜图自动检测核酸并建立新结构模型
低温电子显微镜(cryo-EM)是测定大分子结构最强大的实验方法之一。然而,根据低温电子显微镜图精确地建立DNA/RNA结构模型仍然具有挑战性,特别是对于蛋白质-DNA/RNA或多链DNA/RNA复合物。在此,我们提出了一种基于深度学习的方法,用于从 5 Å 分辨率的低温电子显微镜图中准确地从头确定 DNA/RNA 的结构,该方法被称为 EM2NA。EM2NA 在由 50 张 2.0-5.0 Å 分辨率的实验图组成的各种测试集上进行了广泛评估,并与 CryoREAD、ModelAngelo 和 phenix.map_to_model 等最先进的方法进行了比较。平均而言,EM2NA 的残基覆盖率为 83.15%,C4' RMSD 为 1.06 Å,序列召回率为 46.86%,优于现有方法。此外,EM2NA 还可用于从 EMDB 范围内的 263 个未建模原始图谱数据集中构建 10 至 5347 nt 的 DNA/RNA 结构,证明了其从低温电子显微镜图谱中盲建 DNA/RNA 模型的能力。EM2NA 的速度很快,通常可在 10 分钟内构建出 500 nt 的 DNA/RNA 结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
期刊最新文献
High-parametric protein maps reveal the spatial organization in early-developing human lung Innate immune control of influenza virus interspecies adaptation via IFITM3 Automated detection and de novo structure modeling of nucleic acids from cryo-EM maps Encoding extracellular modification of artificial cell membranes using engineered self-translocating proteins A large-scale examination of inductive biases shaping high-level visual representation in brains and machines
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1