Jorge Pérez-Aracil, Cosmin M. Marina, Eduardo Zorita, David Barriopedro, Pablo Zaninelli, Matteo Giuliani, Andrea Castelletti, Pedro A. Gutiérrez, Sancho Salcedo-Sanz
{"title":"Autoencoder-based flow-analogue probabilistic reconstruction of heat waves from pressure fields","authors":"Jorge Pérez-Aracil, Cosmin M. Marina, Eduardo Zorita, David Barriopedro, Pablo Zaninelli, Matteo Giuliani, Andrea Castelletti, Pedro A. Gutiérrez, Sancho Salcedo-Sanz","doi":"10.1111/nyas.15243","DOIUrl":null,"url":null,"abstract":"<p>This paper presents a novel hybrid approach for the probabilistic reconstruction of meteorological fields based on the combined use of the analogue method (AM) and deep autoencoders (AEs). The AE–AM algorithm trains a deep AE in the predictor fields, which the encoder filters towards a compressed space of reduced dimensionality. The AM is then applied in this latent space to find similar situations (analogues) in the historical record, from which the target field can be reconstructed. The AE–AM is compared to the classical AM, in which flow analogues are explicitly searched in the fully resolved field of the predictor, which may contain useless information for the reconstruction. We evaluate the performance of these two approaches in reconstructing the daily maximum temperature (target) from sea-level pressure fields (predictor) recorded during eight major European heat waves of the 1950–2010 period. We show that the proposed AE–AM approach outperforms the standard AM algorithm in reconstructing the magnitude and spatial pattern of the considered heat wave events. The improvement ranges from 7% to 22% in skill score, depending on the heat wave analyzed, demonstrating the potential added value of the hybrid method.</p>","PeriodicalId":8250,"journal":{"name":"Annals of the New York Academy of Sciences","volume":"1541 1","pages":"230-242"},"PeriodicalIF":4.1000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/nyas.15243","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of the New York Academy of Sciences","FirstCategoryId":"103","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/nyas.15243","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a novel hybrid approach for the probabilistic reconstruction of meteorological fields based on the combined use of the analogue method (AM) and deep autoencoders (AEs). The AE–AM algorithm trains a deep AE in the predictor fields, which the encoder filters towards a compressed space of reduced dimensionality. The AM is then applied in this latent space to find similar situations (analogues) in the historical record, from which the target field can be reconstructed. The AE–AM is compared to the classical AM, in which flow analogues are explicitly searched in the fully resolved field of the predictor, which may contain useless information for the reconstruction. We evaluate the performance of these two approaches in reconstructing the daily maximum temperature (target) from sea-level pressure fields (predictor) recorded during eight major European heat waves of the 1950–2010 period. We show that the proposed AE–AM approach outperforms the standard AM algorithm in reconstructing the magnitude and spatial pattern of the considered heat wave events. The improvement ranges from 7% to 22% in skill score, depending on the heat wave analyzed, demonstrating the potential added value of the hybrid method.
期刊介绍:
Published on behalf of the New York Academy of Sciences, Annals of the New York Academy of Sciences provides multidisciplinary perspectives on research of current scientific interest with far-reaching implications for the wider scientific community and society at large. Each special issue assembles the best thinking of key contributors to a field of investigation at a time when emerging developments offer the promise of new insight. Individually themed, Annals special issues stimulate new ways to think about science by providing a neutral forum for discourse—within and across many institutions and fields.