Venkata A. Surapaneni, Benjamin Flaum, Mike Schindler, Khizar Hayat, Jan Wölfer, Daniel Baum, Ruien Hu, Ting Fai Kong, Michael Doube, Mason N. Dean
{"title":"The helmeted hornbill casque is reinforced by a bundle of exceptionally thick, rod‐like trabeculae","authors":"Venkata A. Surapaneni, Benjamin Flaum, Mike Schindler, Khizar Hayat, Jan Wölfer, Daniel Baum, Ruien Hu, Ting Fai Kong, Michael Doube, Mason N. Dean","doi":"10.1111/nyas.15254","DOIUrl":null,"url":null,"abstract":"Among hornbill birds, the critically endangered helmeted hornbill (<jats:italic>Rhinoplax vigil</jats:italic>) is notable for its casque (a bulbous beak protrusion) being filled with trabeculae and fronted by a very thick keratin layer. Casque function is debated but appears central to aerial jousting, where birds (typically males) collide casques at high speeds in a mid‐flight display that is audible for more than 100 m. We characterized the structural relationship between the skull and casque anatomy using X‐ray microtomography and quantitative trabecular network analysis to examine how the casque sustains extreme impact. The casque comprises a keratin veneer (rhamphotheca, ∼8× thicker than beak keratin), which slots over the internal bony casque like a tight‐fitting sheath. The bony casque's central cavity contains a network of trabeculae—heavily aligned and predominantly rod‐like, among the thickest described in vertebrates—forming a massive rostrocaudal strut spanning the casque's length, bridging rostral (impact), and caudal (braincase) surfaces. Quantitative network characterizations indicate no differences between male and female trabecular architectures. This suggests that females may also joust or that casques play other roles. Our results argue that the casque's impact loading demands and shapes a high‐safety‐factor construction that involves extreme trabecular morphologies among vertebrates, architectures that also have the potential for informing the design of collision‐resistant materials.","PeriodicalId":8250,"journal":{"name":"Annals of the New York Academy of Sciences","volume":"22 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of the New York Academy of Sciences","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1111/nyas.15254","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Among hornbill birds, the critically endangered helmeted hornbill (Rhinoplax vigil) is notable for its casque (a bulbous beak protrusion) being filled with trabeculae and fronted by a very thick keratin layer. Casque function is debated but appears central to aerial jousting, where birds (typically males) collide casques at high speeds in a mid‐flight display that is audible for more than 100 m. We characterized the structural relationship between the skull and casque anatomy using X‐ray microtomography and quantitative trabecular network analysis to examine how the casque sustains extreme impact. The casque comprises a keratin veneer (rhamphotheca, ∼8× thicker than beak keratin), which slots over the internal bony casque like a tight‐fitting sheath. The bony casque's central cavity contains a network of trabeculae—heavily aligned and predominantly rod‐like, among the thickest described in vertebrates—forming a massive rostrocaudal strut spanning the casque's length, bridging rostral (impact), and caudal (braincase) surfaces. Quantitative network characterizations indicate no differences between male and female trabecular architectures. This suggests that females may also joust or that casques play other roles. Our results argue that the casque's impact loading demands and shapes a high‐safety‐factor construction that involves extreme trabecular morphologies among vertebrates, architectures that also have the potential for informing the design of collision‐resistant materials.
期刊介绍:
Published on behalf of the New York Academy of Sciences, Annals of the New York Academy of Sciences provides multidisciplinary perspectives on research of current scientific interest with far-reaching implications for the wider scientific community and society at large. Each special issue assembles the best thinking of key contributors to a field of investigation at a time when emerging developments offer the promise of new insight. Individually themed, Annals special issues stimulate new ways to think about science by providing a neutral forum for discourse—within and across many institutions and fields.