{"title":"Chlorine–Nitrogen Doped Hollow Polyhedral Carbon-Based Catalysts for High Performance Zinc–Air Batteries","authors":"Junhao Li, Mujie Bao, Jiajie Pan, Kaixin Wang, Tong Li, Wei Yang, Quanbing Liu","doi":"10.1021/acs.iecr.4c03089","DOIUrl":null,"url":null,"abstract":"It is significant to exploit low-cost and high-activity electrocatalysts for practical zinc–air batteries (ZABs). Herein, a chlorine-nitrogen codoped hollow carbon polyhedron catalyst (Cl-NC-1000) is synthesized by the thermal decomposition of ZIF precursors with a template and intercalating agent of NaCl. Experimental results demonstrate that the synergistic effect of chlorine and nitrogen adjusts the electronic structure of neighboring carbon atoms, facilitating the capturing/releasing of oxygen reduction reaction (ORR) intermediates, thereby reinforcing the intrinsic activity. As a result, the fabricated Cl-NC-1000 catalyst exhibits an outstanding ORR performance, including catalytic activity, selectivity, and stability. When applied in ZABs, the Cl-NC-1000 catalyst maintains a voltage difference of ca. 0.96 V at 5 mA cm<sup>–2</sup> and cycles over 300 h with an energy efficiency of 53%, superior to those of commercial Pt/C-based rechargeable ZABs. This work provides an efficient strategy for designing cost-effective and high-activity nonmetallic ORR catalysts.","PeriodicalId":39,"journal":{"name":"Industrial & Engineering Chemistry Research","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial & Engineering Chemistry Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acs.iecr.4c03089","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
It is significant to exploit low-cost and high-activity electrocatalysts for practical zinc–air batteries (ZABs). Herein, a chlorine-nitrogen codoped hollow carbon polyhedron catalyst (Cl-NC-1000) is synthesized by the thermal decomposition of ZIF precursors with a template and intercalating agent of NaCl. Experimental results demonstrate that the synergistic effect of chlorine and nitrogen adjusts the electronic structure of neighboring carbon atoms, facilitating the capturing/releasing of oxygen reduction reaction (ORR) intermediates, thereby reinforcing the intrinsic activity. As a result, the fabricated Cl-NC-1000 catalyst exhibits an outstanding ORR performance, including catalytic activity, selectivity, and stability. When applied in ZABs, the Cl-NC-1000 catalyst maintains a voltage difference of ca. 0.96 V at 5 mA cm–2 and cycles over 300 h with an energy efficiency of 53%, superior to those of commercial Pt/C-based rechargeable ZABs. This work provides an efficient strategy for designing cost-effective and high-activity nonmetallic ORR catalysts.
期刊介绍:
ndustrial & Engineering Chemistry, with variations in title and format, has been published since 1909 by the American Chemical Society. Industrial & Engineering Chemistry Research is a weekly publication that reports industrial and academic research in the broad fields of applied chemistry and chemical engineering with special focus on fundamentals, processes, and products.