{"title":"Fabrication of ion imprinted diethylenetriamine pentaacetic acid-polyethylenimine modified magnetic graphene oxide for selective adsorption of Ce(III)","authors":"Ting Guo , Chaoke Bulin , Rongxiang Zheng","doi":"10.1016/j.jclepro.2024.144104","DOIUrl":null,"url":null,"abstract":"<div><div>Selective recovery of rare earth elements is essential for both sustainable exploitation of rare earth resources and environmental remediation. Herein, Ce(Ⅲ) imprinted diethylenetriamine pentaacetic acid-polyethylenimine modified magnetic graphene oxide (IIP-DTPA-PEI-MGO) was fabricated for selective adsorption of Ce(Ⅲ). Adsorption efficiency and selectivity performance of IIP-DTPA-PEI-MGO towards Ce(Ⅲ) were evaluated via batch adsorption targeted at single and mixed solution, respectively. Adsorption mechanism was elucidated based on versatile adsorption fittings (isotherms, kinetics, thermodynamics) and spectroscopic tests (XPS, FTIR). Result presents, maximum adsorption efficiency of IIP-DTPA-PEI-MGO for Ce(III) is reached at pH = 5 in 30 min, demonstrating superior efficiency. The maximum mono layer adsorption capacity determined by the Langmuir model is 281.69 mg g<sup>−1</sup>. After adsorption, 75.65 % of original Ce(Ⅲ) is transferred into Ce(Ⅳ), while 24.35 % remain as Ce(Ⅲ). Furthermore, by virtue of its paramagnetic property, IIP-DTPA-PEI-MGO can be easily recovered for cyclic adsorption, thereby keeping adsorption quantity 90.44 mg g<sup>−1</sup> on Ce(Ⅲ) in five consecutive cycles. Owing to ion imprinting sites, IIP-DTPA-PEI-MGO exhibits selectivity coefficient 1.34, 1.69, 2.32, 2.96, 15.24, 10.51 towards Ce(III) for binary solution Ce/La, Ce/Nd, Ce/Eu, Ce/Dy, Ce/Cu, Ce/Cr, respectively. In terms of adsorption mechanism, versatile functional groups O-H, C-N, C-O in IIP-DTPA-PEI-MGO provide heterogeneous affinity for Ce(Ⅲ), inducing chemical adsorption. This work provides a novel approach towards fabricating magnetic bio adsorbent for selective recovery of Ce(Ⅲ).</div></div>","PeriodicalId":349,"journal":{"name":"Journal of Cleaner Production","volume":"481 ","pages":"Article 144104"},"PeriodicalIF":9.7000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cleaner Production","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959652624035534","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Selective recovery of rare earth elements is essential for both sustainable exploitation of rare earth resources and environmental remediation. Herein, Ce(Ⅲ) imprinted diethylenetriamine pentaacetic acid-polyethylenimine modified magnetic graphene oxide (IIP-DTPA-PEI-MGO) was fabricated for selective adsorption of Ce(Ⅲ). Adsorption efficiency and selectivity performance of IIP-DTPA-PEI-MGO towards Ce(Ⅲ) were evaluated via batch adsorption targeted at single and mixed solution, respectively. Adsorption mechanism was elucidated based on versatile adsorption fittings (isotherms, kinetics, thermodynamics) and spectroscopic tests (XPS, FTIR). Result presents, maximum adsorption efficiency of IIP-DTPA-PEI-MGO for Ce(III) is reached at pH = 5 in 30 min, demonstrating superior efficiency. The maximum mono layer adsorption capacity determined by the Langmuir model is 281.69 mg g−1. After adsorption, 75.65 % of original Ce(Ⅲ) is transferred into Ce(Ⅳ), while 24.35 % remain as Ce(Ⅲ). Furthermore, by virtue of its paramagnetic property, IIP-DTPA-PEI-MGO can be easily recovered for cyclic adsorption, thereby keeping adsorption quantity 90.44 mg g−1 on Ce(Ⅲ) in five consecutive cycles. Owing to ion imprinting sites, IIP-DTPA-PEI-MGO exhibits selectivity coefficient 1.34, 1.69, 2.32, 2.96, 15.24, 10.51 towards Ce(III) for binary solution Ce/La, Ce/Nd, Ce/Eu, Ce/Dy, Ce/Cu, Ce/Cr, respectively. In terms of adsorption mechanism, versatile functional groups O-H, C-N, C-O in IIP-DTPA-PEI-MGO provide heterogeneous affinity for Ce(Ⅲ), inducing chemical adsorption. This work provides a novel approach towards fabricating magnetic bio adsorbent for selective recovery of Ce(Ⅲ).
期刊介绍:
The Journal of Cleaner Production is an international, transdisciplinary journal that addresses and discusses theoretical and practical Cleaner Production, Environmental, and Sustainability issues. It aims to help societies become more sustainable by focusing on the concept of 'Cleaner Production', which aims at preventing waste production and increasing efficiencies in energy, water, resources, and human capital use. The journal serves as a platform for corporations, governments, education institutions, regions, and societies to engage in discussions and research related to Cleaner Production, environmental, and sustainability practices.