{"title":"Metabolic Characterization of Vamorolone in Human Liver Microsomes: Implications for Anti-Doping.","authors":"Zhongquan Li, Bing Liu, Yirang Wang, Chunyang Yu, Xin Xu, Peijie Chen","doi":"10.1002/dta.3819","DOIUrl":null,"url":null,"abstract":"<p><p>Vamorolone, a potential alternative to conventional glucocorticoids, shows significant promise in sports medicine due to its reduced side effects and superior pharmacodynamic properties. This study aims to investigate the metabolic characteristics of this novel synthetic cyclodextrin-steroid anti-inflammatory drug and elucidate the metabolic pathways in human liver microsomes (HLMs) in vitro, thereby providing a scientific basis for assessing its potential risks for athletes. All compounds are detected by liquid chromatography-high resolution mass spectrometry (LC-HRMS) and metabolite identification was performed using Compound Discoverer 3.3 software. In the HLMs model, 12 metabolites of vamorolone are successfully identified, including 10 phase I metabolites and 2 phase II metabolites. Among these, the reduction metabolite M1 exhibited the highest peak area, indicating it as one of the primary metabolic pathways. The dehydrogenated compound M2 had the second highest peak area, further elucidating the metabolic characteristics of vamorolone. This study systematically identifies the metabolite structures of vamorolone in HLMs and provide crucial data for the pharmacokinetics and biomarker research of this drug. The findings not only enhance the understanding of its metabolic mechanisms but also offer a scientific basis for evaluating its safety and efficacy in sports medicine. Meanwhile, these discoveries can contribute to better regulation and control of Vamorolone's use in competitive sports, ensuring fairness in competitions.</p>","PeriodicalId":160,"journal":{"name":"Drug Testing and Analysis","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Testing and Analysis","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/dta.3819","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Vamorolone, a potential alternative to conventional glucocorticoids, shows significant promise in sports medicine due to its reduced side effects and superior pharmacodynamic properties. This study aims to investigate the metabolic characteristics of this novel synthetic cyclodextrin-steroid anti-inflammatory drug and elucidate the metabolic pathways in human liver microsomes (HLMs) in vitro, thereby providing a scientific basis for assessing its potential risks for athletes. All compounds are detected by liquid chromatography-high resolution mass spectrometry (LC-HRMS) and metabolite identification was performed using Compound Discoverer 3.3 software. In the HLMs model, 12 metabolites of vamorolone are successfully identified, including 10 phase I metabolites and 2 phase II metabolites. Among these, the reduction metabolite M1 exhibited the highest peak area, indicating it as one of the primary metabolic pathways. The dehydrogenated compound M2 had the second highest peak area, further elucidating the metabolic characteristics of vamorolone. This study systematically identifies the metabolite structures of vamorolone in HLMs and provide crucial data for the pharmacokinetics and biomarker research of this drug. The findings not only enhance the understanding of its metabolic mechanisms but also offer a scientific basis for evaluating its safety and efficacy in sports medicine. Meanwhile, these discoveries can contribute to better regulation and control of Vamorolone's use in competitive sports, ensuring fairness in competitions.
期刊介绍:
As the incidence of drugs escalates in 21st century living, their detection and analysis have become increasingly important. Sport, the workplace, crime investigation, homeland security, the pharmaceutical industry and the environment are just some of the high profile arenas in which analytical testing has provided an important investigative tool for uncovering the presence of extraneous substances.
In addition to the usual publishing fare of primary research articles, case reports and letters, Drug Testing and Analysis offers a unique combination of; ‘How to’ material such as ‘Tutorials’ and ‘Reviews’, Speculative pieces (‘Commentaries’ and ‘Perspectives'', providing a broader scientific and social context to the aspects of analytical testing), ‘Annual banned substance reviews’ (delivering a critical evaluation of the methods used in the characterization of established and newly outlawed compounds).
Rather than focus on the application of a single technique, Drug Testing and Analysis employs a unique multidisciplinary approach to the field of controversial compound determination. Papers discussing chromatography, mass spectrometry, immunological approaches, 1D/2D gel electrophoresis, to name just a few select methods, are welcomed where their application is related to any of the six key topics listed below.