{"title":"Effects of motor imagery training on generalization and retention for different task difficulties.","authors":"Yoichiro Sato","doi":"10.3389/fnhum.2024.1459987","DOIUrl":null,"url":null,"abstract":"<p><p>Although previous studies have suggested that motor adaptation through motor imagery training of similar tasks can improve retention and generalization of motor learning, the benefits of mental and physical training remain unclear for different task difficulties. Two experiments were conducted in this study. The first experiment aimed to determine whether there were differences in movement time (MT) when drawing circles based on three conditions in accordance with Fitts' law. The results showed significant differences in MT among the three conditions (<i>p</i> < 0.001), with MT becoming long as the width of the circle line (which indicated different difficulty level) narrowed. The second experiment aimed to determine whether the task difficulty influenced immediate generalization and retention at 24 h after mental vs. physical training. Participants in both training groups practiced the task with the medium-sized circle, which indicated medium difficulty. The posttest results revealed that mental training leads to considerable performance improvement than physical training, as demonstrated by a shorter MT regardless of the task difficulty level. Meanwhile, the retention test results showed no difference in generalization between mental and physical training. However, generalization of an easier task was more effectively retained than more difficult tasks. These results suggest that mental training can improve performance during the adaptation phase and that difficulty level can influence the degree of retention.</p>","PeriodicalId":12536,"journal":{"name":"Frontiers in Human Neuroscience","volume":"18 ","pages":"1459987"},"PeriodicalIF":2.4000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11521821/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Human Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fnhum.2024.1459987","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Although previous studies have suggested that motor adaptation through motor imagery training of similar tasks can improve retention and generalization of motor learning, the benefits of mental and physical training remain unclear for different task difficulties. Two experiments were conducted in this study. The first experiment aimed to determine whether there were differences in movement time (MT) when drawing circles based on three conditions in accordance with Fitts' law. The results showed significant differences in MT among the three conditions (p < 0.001), with MT becoming long as the width of the circle line (which indicated different difficulty level) narrowed. The second experiment aimed to determine whether the task difficulty influenced immediate generalization and retention at 24 h after mental vs. physical training. Participants in both training groups practiced the task with the medium-sized circle, which indicated medium difficulty. The posttest results revealed that mental training leads to considerable performance improvement than physical training, as demonstrated by a shorter MT regardless of the task difficulty level. Meanwhile, the retention test results showed no difference in generalization between mental and physical training. However, generalization of an easier task was more effectively retained than more difficult tasks. These results suggest that mental training can improve performance during the adaptation phase and that difficulty level can influence the degree of retention.
期刊介绍:
Frontiers in Human Neuroscience is a first-tier electronic journal devoted to understanding the brain mechanisms supporting cognitive and social behavior in humans, and how these mechanisms might be altered in disease states. The last 25 years have seen an explosive growth in both the methods and the theoretical constructs available to study the human brain. Advances in electrophysiological, neuroimaging, neuropsychological, psychophysical, neuropharmacological and computational approaches have provided key insights into the mechanisms of a broad range of human behaviors in both health and disease. Work in human neuroscience ranges from the cognitive domain, including areas such as memory, attention, language and perception to the social domain, with this last subject addressing topics, such as interpersonal interactions, social discourse and emotional regulation. How these processes unfold during development, mature in adulthood and often decline in aging, and how they are altered in a host of developmental, neurological and psychiatric disorders, has become increasingly amenable to human neuroscience research approaches. Work in human neuroscience has influenced many areas of inquiry ranging from social and cognitive psychology to economics, law and public policy. Accordingly, our journal will provide a forum for human research spanning all areas of human cognitive, social, developmental and translational neuroscience using any research approach.