Chen Chen, Jinqiu Zhou, Hongyi Wang, Youyou Fan, Xinyue Song, Jianbing Xie, Thomas Bäck, Hao Wang
{"title":"Machine learning-driven discovery of high-performance MEMS disk resonator gyroscope structural topologies.","authors":"Chen Chen, Jinqiu Zhou, Hongyi Wang, Youyou Fan, Xinyue Song, Jianbing Xie, Thomas Bäck, Hao Wang","doi":"10.1038/s41378-024-00792-4","DOIUrl":null,"url":null,"abstract":"<p><p>The design of the microelectromechanical system (MEMS) disc resonator gyroscope (DRG) structural topology is crucial for its physical properties and performance. However, creating novel high-performance MEMS DRGs has long been viewed as a formidable challenge owing to their enormous design space, the complexity of microscale physical effects, and time-consuming finite element analysis (FEA). Here, we introduce a new machine learning-driven approach to discover high-performance DRG topologies. We represent the DRG topology as pixelated binary matrices and formulate the design task as a path-planning problem. This path-planning problem is solved via deep reinforcement learning (DRL). In addition, we develop a convolutional neural network-based surrogate model to replace the expensive FEA to provide reward signals for DRL training. Benefiting from the computational efficiency of neural networks, our approach achieves a significant acceleration ratio of 4.03 × 10<sup>5</sup> compared with FEA, reducing each DRL training run to only 426.5 s. Through 8000 training runs, we discovered 7120 novel structural topologies that achieve navigation-grade precision. Many of these surpass traditional designs in performance by several orders of magnitude, revealing innovative solutions previously unconceived by humans.</p>","PeriodicalId":18560,"journal":{"name":"Microsystems & Nanoengineering","volume":"10 1","pages":"161"},"PeriodicalIF":7.3000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11522492/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microsystems & Nanoengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41378-024-00792-4","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0
Abstract
The design of the microelectromechanical system (MEMS) disc resonator gyroscope (DRG) structural topology is crucial for its physical properties and performance. However, creating novel high-performance MEMS DRGs has long been viewed as a formidable challenge owing to their enormous design space, the complexity of microscale physical effects, and time-consuming finite element analysis (FEA). Here, we introduce a new machine learning-driven approach to discover high-performance DRG topologies. We represent the DRG topology as pixelated binary matrices and formulate the design task as a path-planning problem. This path-planning problem is solved via deep reinforcement learning (DRL). In addition, we develop a convolutional neural network-based surrogate model to replace the expensive FEA to provide reward signals for DRL training. Benefiting from the computational efficiency of neural networks, our approach achieves a significant acceleration ratio of 4.03 × 105 compared with FEA, reducing each DRL training run to only 426.5 s. Through 8000 training runs, we discovered 7120 novel structural topologies that achieve navigation-grade precision. Many of these surpass traditional designs in performance by several orders of magnitude, revealing innovative solutions previously unconceived by humans.
期刊介绍:
Microsystems & Nanoengineering is a comprehensive online journal that focuses on the field of Micro and Nano Electro Mechanical Systems (MEMS and NEMS). It provides a platform for researchers to share their original research findings and review articles in this area. The journal covers a wide range of topics, from fundamental research to practical applications. Published by Springer Nature, in collaboration with the Aerospace Information Research Institute, Chinese Academy of Sciences, and with the support of the State Key Laboratory of Transducer Technology, it is an esteemed publication in the field. As an open access journal, it offers free access to its content, allowing readers from around the world to benefit from the latest developments in MEMS and NEMS.