{"title":"Potato NPH3/RPT2-like (NRL) member StNRL-9 interacts with Stphots and negatively regulates late blight resistance.","authors":"Tianyu Lin, Huishan Qiu, Dong Cheng, Qingguo Sun, Lang Liu, Zhendong Tian","doi":"10.1111/ppl.14594","DOIUrl":null,"url":null,"abstract":"<p><p>Blue light enhances the susceptibility of Nicotiana benthamiana to Phytophthora infestans, a causative agent of late blight disease. Investigating how blue light affects potato late blight resistance is an interesting aspect of exploring new ways to control late blight disease. Blue light photoreceptor phototropins (phot1, phot2) and their downstream interact protein StNRL1 have been shown to negatively regulate late blight resistance. In order to investigate whether other potato NPH3/RPT2-Like (NRL) family members are involved in regulating late blight resistance, this study focused on the potato NRL proteins containing RxSxS motif at the C-terminus. Another potato NRL protein StNRL-9, containing RxSxS motifs, was found to negatively regulate P. infestans resistance in potato and N. benthamiana. Overexpression of StNRL-9 in potato and N. benthamiana suppresses the accumulation of reactive oxygen species (ROS) and expression of the PTI marker genes NbWRKY7 and NbWRKY8. Similar to StNRL1, StNRL-9 interacts with the blue light receptors Stphot1 and Stphot2 on the cell membrane and could promote the degradation of a positive immune regulator StSWAP70. However StNRL-9 does not inhibit INF1-mediated cell death (ICD), which is different from the StNRL1 that inhibits ICD, indicating that both StNRL1 and StNRL-9 inhibit plant immunity in diverse ways. This study provides valuable information for further exploration of how plant phototropins and NRL family proteins regulate plant immunity.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"176 6","pages":"e14594"},"PeriodicalIF":5.4000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiologia plantarum","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/ppl.14594","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Blue light enhances the susceptibility of Nicotiana benthamiana to Phytophthora infestans, a causative agent of late blight disease. Investigating how blue light affects potato late blight resistance is an interesting aspect of exploring new ways to control late blight disease. Blue light photoreceptor phototropins (phot1, phot2) and their downstream interact protein StNRL1 have been shown to negatively regulate late blight resistance. In order to investigate whether other potato NPH3/RPT2-Like (NRL) family members are involved in regulating late blight resistance, this study focused on the potato NRL proteins containing RxSxS motif at the C-terminus. Another potato NRL protein StNRL-9, containing RxSxS motifs, was found to negatively regulate P. infestans resistance in potato and N. benthamiana. Overexpression of StNRL-9 in potato and N. benthamiana suppresses the accumulation of reactive oxygen species (ROS) and expression of the PTI marker genes NbWRKY7 and NbWRKY8. Similar to StNRL1, StNRL-9 interacts with the blue light receptors Stphot1 and Stphot2 on the cell membrane and could promote the degradation of a positive immune regulator StSWAP70. However StNRL-9 does not inhibit INF1-mediated cell death (ICD), which is different from the StNRL1 that inhibits ICD, indicating that both StNRL1 and StNRL-9 inhibit plant immunity in diverse ways. This study provides valuable information for further exploration of how plant phototropins and NRL family proteins regulate plant immunity.
期刊介绍:
Physiologia Plantarum is an international journal committed to publishing the best full-length original research papers that advance our understanding of primary mechanisms of plant development, growth and productivity as well as plant interactions with the biotic and abiotic environment. All organisational levels of experimental plant biology – from molecular and cell biology, biochemistry and biophysics to ecophysiology and global change biology – fall within the scope of the journal. The content is distributed between 5 main subject areas supervised by Subject Editors specialised in the respective domain: (1) biochemistry and metabolism, (2) ecophysiology, stress and adaptation, (3) uptake, transport and assimilation, (4) development, growth and differentiation, (5) photobiology and photosynthesis.