Thibaut Legat, Vladimir Grachev, Desmond Kabus, Minne Paul Lettinga, Koen Clays, Thierry Verbiest, Yovan de Coene, Wim Thielemans, Stijn Van Cleuvenbergen
{"title":"Imaging with a twist: Three-dimensional insights of the chiral nematic phase of cellulose nanocrystals via SHG microscopy","authors":"Thibaut Legat, Vladimir Grachev, Desmond Kabus, Minne Paul Lettinga, Koen Clays, Thierry Verbiest, Yovan de Coene, Wim Thielemans, Stijn Van Cleuvenbergen","doi":"10.1126/sciadv.adp2384","DOIUrl":null,"url":null,"abstract":"<div >Cellulose nanocrystals (CNCs) are bio-based nanoparticles that, under the right conditions, self-align into chiral nematic liquid crystals with a helical pitch. In this work, we exploit the inherent confocal effect of second-harmonic generation (SHG) microscopy to acquire highly resolved three-dimensional (3D) images of the chiral nematic phase of CNCs in a label-free manner. An in-depth analysis revealed a direct link between the observed variations in SHG intensity and the pitch. The highly contrasted 3D images provided unprecedented detail into liquid crystal’s native structure. Local alignment, morphology, as well as the presence of defects are readily revealed, and a provisional framework relating the SHG response to the orientational distribution of CNC nanorods within the liquid crystal structure is presented. This paper illustrates the numerous benefits of using SHG microscopy for visualizing CNC chiral nematic systems directly in the suspension-liquid phase and paves the road for using SHG microscopy to characterize other types of aligned CNC structures, in wet and dry states.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":null,"pages":null},"PeriodicalIF":11.7000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adp2384","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adp2384","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Cellulose nanocrystals (CNCs) are bio-based nanoparticles that, under the right conditions, self-align into chiral nematic liquid crystals with a helical pitch. In this work, we exploit the inherent confocal effect of second-harmonic generation (SHG) microscopy to acquire highly resolved three-dimensional (3D) images of the chiral nematic phase of CNCs in a label-free manner. An in-depth analysis revealed a direct link between the observed variations in SHG intensity and the pitch. The highly contrasted 3D images provided unprecedented detail into liquid crystal’s native structure. Local alignment, morphology, as well as the presence of defects are readily revealed, and a provisional framework relating the SHG response to the orientational distribution of CNC nanorods within the liquid crystal structure is presented. This paper illustrates the numerous benefits of using SHG microscopy for visualizing CNC chiral nematic systems directly in the suspension-liquid phase and paves the road for using SHG microscopy to characterize other types of aligned CNC structures, in wet and dry states.
期刊介绍:
Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.