Megan M. Allyn, Annie K. Ryan, Grace Rivera, Esther Mamo, Joshua Bopp, Sebastian Martinez Hernandez, Julie Racine, Eric J. Miller, Heather L. Chandler, Katelyn E. Swindle-Reilly
{"title":"In Vivo Assessment of an Antioxidant Hydrogel Vitreous Substitute","authors":"Megan M. Allyn, Annie K. Ryan, Grace Rivera, Esther Mamo, Joshua Bopp, Sebastian Martinez Hernandez, Julie Racine, Eric J. Miller, Heather L. Chandler, Katelyn E. Swindle-Reilly","doi":"10.1002/jbm.a.37813","DOIUrl":null,"url":null,"abstract":"<p>The vitreous humor undergoes liquefaction with age, resulting in complications that may require a vitrectomy, or surgical removal of the vitreous from the eye. Silicone oil, a common vitreous substitute, lacks properties similar to the natural vitreous. In particular, it lacks antioxidants that may be necessary to reduce oxidative stress in the eye. The purpose of this study was to evaluate antioxidant-loaded hydrogel vitreous substitutes in a pilot in vivo study. Ascorbic acid and glutathione were loaded into synthesized PEGDA hydrogels. Following vitrectomy, experimental antioxidant hydrogels or silicone oil were injected into one eye of rabbits, while the other eye served as untreated or sham control. Ophthalmic assessments, including electroretinography, were performed. Levels of glutathione and ascorbic acid were higher in the eyes treated with the antioxidant-loaded hydrogel vitreous substitute, although this was not found to be significant after 28 days. There were no statistically significant differences between groups with respect to clinical examination, and ocular health scores, electroretinograms, and histology were normal. These results indicate minimal concerns for the hydrogel formulation or high levels of antioxidants. Future research will assess the capability of vitreous substitutes to prolong antioxidant release, with the goal of minimizing cataract after vitrectomy.</p>","PeriodicalId":15142,"journal":{"name":"Journal of biomedical materials research. Part A","volume":"113 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jbm.a.37813","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomedical materials research. Part A","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbm.a.37813","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The vitreous humor undergoes liquefaction with age, resulting in complications that may require a vitrectomy, or surgical removal of the vitreous from the eye. Silicone oil, a common vitreous substitute, lacks properties similar to the natural vitreous. In particular, it lacks antioxidants that may be necessary to reduce oxidative stress in the eye. The purpose of this study was to evaluate antioxidant-loaded hydrogel vitreous substitutes in a pilot in vivo study. Ascorbic acid and glutathione were loaded into synthesized PEGDA hydrogels. Following vitrectomy, experimental antioxidant hydrogels or silicone oil were injected into one eye of rabbits, while the other eye served as untreated or sham control. Ophthalmic assessments, including electroretinography, were performed. Levels of glutathione and ascorbic acid were higher in the eyes treated with the antioxidant-loaded hydrogel vitreous substitute, although this was not found to be significant after 28 days. There were no statistically significant differences between groups with respect to clinical examination, and ocular health scores, electroretinograms, and histology were normal. These results indicate minimal concerns for the hydrogel formulation or high levels of antioxidants. Future research will assess the capability of vitreous substitutes to prolong antioxidant release, with the goal of minimizing cataract after vitrectomy.
期刊介绍:
The Journal of Biomedical Materials Research Part A is an international, interdisciplinary, English-language publication of original contributions concerning studies of the preparation, performance, and evaluation of biomaterials; the chemical, physical, toxicological, and mechanical behavior of materials in physiological environments; and the response of blood and tissues to biomaterials. The Journal publishes peer-reviewed articles on all relevant biomaterial topics including the science and technology of alloys,polymers, ceramics, and reprocessed animal and human tissues in surgery,dentistry, artificial organs, and other medical devices. The Journal also publishes articles in interdisciplinary areas such as tissue engineering and controlled release technology where biomaterials play a significant role in the performance of the medical device.
The Journal of Biomedical Materials Research is the official journal of the Society for Biomaterials (USA), the Japanese Society for Biomaterials, the Australasian Society for Biomaterials, and the Korean Society for Biomaterials.
Articles are welcomed from all scientists. Membership in the Society for Biomaterials is not a prerequisite for submission.