Mechanical properties of pure elements from a comprehensive first-principles study to data-driven insights

IF 6.1 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Science and Engineering: A Pub Date : 2024-10-24 DOI:10.1016/j.msea.2024.147446
Shun-Li Shang , Michael C. Gao , Yi Wang , Jingjing Li , Allison M. Beese , Zi-Kui Liu
{"title":"Mechanical properties of pure elements from a comprehensive first-principles study to data-driven insights","authors":"Shun-Li Shang ,&nbsp;Michael C. Gao ,&nbsp;Yi Wang ,&nbsp;Jingjing Li ,&nbsp;Allison M. Beese ,&nbsp;Zi-Kui Liu","doi":"10.1016/j.msea.2024.147446","DOIUrl":null,"url":null,"abstract":"<div><div>Unraveling mechanical properties from fundamental is far from complete despite their vital role in determining applicability and longevity for a given material. Here, we perform a comprehensive study related to mechanical properties of 60 pure elements in bcc, fcc, hcp, and/or diamond structures by means of pure alias shear and pure tensile deformations via density functional theory (DFT) based calculations alongside a broad review of existing literature. The present data compilation enables a detailed correlation analysis of mechanical properties, focusing on DFT-based ideal shear and tensile strengths (<span><math><mrow><msub><mi>τ</mi><mtext>is</mtext></msub></mrow></math></span> and <span><math><mrow><msub><mi>σ</mi><mtext>it</mtext></msub></mrow></math></span>), stable and unstable stacking fault energies (<span><math><mrow><msub><mi>γ</mi><mtext>sf</mtext></msub></mrow></math></span> and <span><math><mrow><msub><mi>γ</mi><mtext>us</mtext></msub></mrow></math></span>), surface energy (<span><math><mrow><msub><mi>γ</mi><mi>s</mi></msub></mrow></math></span>), and vacancy activation energy (<span><math><mrow><msub><mi>Q</mi><mi>V</mi></msub></mrow></math></span>); and experimental hardness (<span><math><mrow><msub><mi>H</mi><mi>B</mi></msub></mrow></math></span>), ultimate tensile strength (<span><math><mrow><msub><mi>σ</mi><mtext>UT</mtext></msub></mrow></math></span>), fracture toughness (<span><math><mrow><msub><mi>K</mi><mtext>Ic</mtext></msub></mrow></math></span>), and elongation (<span><math><mrow><msub><mi>ε</mi><mtext>EL</mtext></msub></mrow></math></span>). The present work examines models, identifies outliers, and provides insights into mechanical properties, for example, (i) <span><math><mrow><msub><mi>H</mi><mi>B</mi></msub></mrow></math></span> is correlated by <span><math><mrow><msub><mi>Q</mi><mi>V</mi></msub></mrow></math></span>, <span><math><mrow><msub><mi>σ</mi><mtext>UT</mtext></msub></mrow></math></span> by <span><math><mrow><msqrt><msub><mi>γ</mi><mi>s</mi></msub></msqrt></mrow></math></span> or <span><math><mrow><msqrt><msub><mi>γ</mi><mtext>us</mtext></msub></msqrt></mrow></math></span>, and <span><math><mrow><msub><mi>K</mi><mtext>Ic</mtext></msub></mrow></math></span> by <span><math><mrow><msub><mi>γ</mi><mi>s</mi></msub></mrow></math></span>; (ii) data outliers are identified for Cr (related to <span><math><mrow><msub><mi>τ</mi><mtext>is</mtext></msub></mrow></math></span>, <span><math><mrow><msub><mi>γ</mi><mi>s</mi></msub></mrow></math></span>, <span><math><mrow><msub><mi>Q</mi><mi>V</mi></msub></mrow></math></span>, and <span><math><mrow><msub><mi>σ</mi><mtext>UT</mtext></msub></mrow></math></span>), Be (<span><math><mrow><msub><mi>τ</mi><mtext>is</mtext></msub></mrow></math></span>, <span><math><mrow><msub><mi>γ</mi><mtext>sf</mtext></msub></mrow></math></span>, <span><math><mrow><msub><mi>γ</mi><mtext>us</mtext></msub></mrow></math></span>, and <span><math><mrow><msub><mi>Q</mi><mi>V</mi></msub></mrow></math></span>), Hf (<span><math><mrow><msub><mi>H</mi><mi>B</mi></msub></mrow></math></span> and <span><math><mrow><msub><mi>K</mi><mtext>Ic</mtext></msub></mrow></math></span>), Yb (all properties), and Pt (<span><math><mrow><msub><mi>γ</mi><mtext>sf</mtext></msub></mrow></math></span> vs. <span><math><mrow><msub><mi>γ</mi><mtext>us</mtext></msub></mrow></math></span>); and (iii) <span><math><mrow><msub><mi>τ</mi><mtext>is</mtext></msub></mrow></math></span>, <span><math><mrow><msub><mi>σ</mi><mtext>it</mtext></msub></mrow></math></span>, <span><math><mrow><msub><mi>γ</mi><mtext>sf</mtext></msub></mrow></math></span>, <span><math><mrow><msub><mi>γ</mi><mtext>us</mtext></msub></mrow></math></span>, <span><math><mrow><msub><mi>γ</mi><mi>s</mi></msub></mrow></math></span>, <span><math><mrow><msub><mi>Q</mi><mi>V</mi></msub></mrow></math></span>, and <span><math><mrow><msub><mi>H</mi><mi>B</mi></msub></mrow></math></span> are highly correlated to elemental attributes, while <span><math><mrow><msub><mi>σ</mi><mtext>UT</mtext></msub></mrow></math></span>, <span><math><mrow><msub><mi>K</mi><mtext>Ic</mtext></msub></mrow></math></span>, and especially <span><math><mrow><msub><mi>ε</mi><mtext>EL</mtext></msub></mrow></math></span> are less correlated due mainly to experimental uncertainty. In particular, the present data compilation provides a solid foundation to model properties such as <span><math><mrow><msub><mi>γ</mi><mi>s</mi></msub></mrow></math></span> and <span><math><mrow><msub><mi>τ</mi><mtext>is</mtext></msub></mrow></math></span> of multicomponent alloys and <span><math><mrow><msub><mi>τ</mi><mtext>is</mtext></msub></mrow></math></span> of unstable structures like bcc Ti, Zr, and Hf.</div></div>","PeriodicalId":385,"journal":{"name":"Materials Science and Engineering: A","volume":"918 ","pages":"Article 147446"},"PeriodicalIF":6.1000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: A","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921509324013777","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Unraveling mechanical properties from fundamental is far from complete despite their vital role in determining applicability and longevity for a given material. Here, we perform a comprehensive study related to mechanical properties of 60 pure elements in bcc, fcc, hcp, and/or diamond structures by means of pure alias shear and pure tensile deformations via density functional theory (DFT) based calculations alongside a broad review of existing literature. The present data compilation enables a detailed correlation analysis of mechanical properties, focusing on DFT-based ideal shear and tensile strengths (τis and σit), stable and unstable stacking fault energies (γsf and γus), surface energy (γs), and vacancy activation energy (QV); and experimental hardness (HB), ultimate tensile strength (σUT), fracture toughness (KIc), and elongation (εEL). The present work examines models, identifies outliers, and provides insights into mechanical properties, for example, (i) HB is correlated by QV, σUT by γs or γus, and KIc by γs; (ii) data outliers are identified for Cr (related to τis, γs, QV, and σUT), Be (τis, γsf, γus, and QV), Hf (HB and KIc), Yb (all properties), and Pt (γsf vs. γus); and (iii) τis, σit, γsf, γus, γs, QV, and HB are highly correlated to elemental attributes, while σUT, KIc, and especially εEL are less correlated due mainly to experimental uncertainty. In particular, the present data compilation provides a solid foundation to model properties such as γs and τis of multicomponent alloys and τis of unstable structures like bcc Ti, Zr, and Hf.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从全面的第一性原理研究到数据驱动的纯元素机械特性见解
尽管机械特性对特定材料的适用性和寿命起着至关重要的作用,但从根本上揭示机械特性的工作远未完成。在此,我们通过基于密度泛函理论(DFT)的计算,对 60 种 bcc、fcc、hcp 和/或金刚石结构的纯元素的机械特性进行了全面研究,并对现有文献进行了广泛回顾。本数据汇编可对机械性能进行详细的关联分析,重点关注基于 DFT 的理想剪切和拉伸强度(τis 和 σit)、稳定和不稳定堆积断层能(γsf 和 γus)、表面能(γs)和空位活化能(QV);以及实验硬度(HB)、极限拉伸强度(σUT)、断裂韧性(KIc)和伸长率(εEL)。本研究对模型进行了检验,确定了异常值,并提供了对机械性能的见解,例如:(i) HB 与 QV 相关,σUT 与 γs 或 γus 相关,KIc 与 γs 相关;(ii) 找出以下方面的数据异常值:铬(与 τis 、γs 、QV 和 σUT 有关)、铍(τis 、γsf 、γus 和 QV )、铪(HB 和 KIc )、镱(所有性质)和铂(γsf 与 γus 的关系);以及 iii.γus);(iii) τis、σit、γsf、γus、γs、QV 和 HB 与元素属性高度相关,而 σUT、KIc,特别是 εEL 则主要由于实验不确定性而相关性较低。特别是,目前的数据汇编为多组分合金的 γs 和 τis 以及 bcc Ti、Zr 和 Hf 等不稳定结构的 τis 等属性建模提供了坚实的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials Science and Engineering: A
Materials Science and Engineering: A 工程技术-材料科学:综合
CiteScore
11.50
自引率
15.60%
发文量
1811
审稿时长
31 days
期刊介绍: Materials Science and Engineering A provides an international medium for the publication of theoretical and experimental studies related to the load-bearing capacity of materials as influenced by their basic properties, processing history, microstructure and operating environment. Appropriate submissions to Materials Science and Engineering A should include scientific and/or engineering factors which affect the microstructure - strength relationships of materials and report the changes to mechanical behavior.
期刊最新文献
Effects of σ phase embrittlement and Al addition on the ductile-brittle transition in super ferritic stainless steels Precipitation and TRIP enhanced spallation resistance of additive manufactured M350 steel Thermo-mechanical response and form-stability of a fully metallic composite phase change material: Dilatometric tests and finite element analysis A novel strategy for preparing gradient grained Mg alloy by normal extrusion process The effects of loading direction on the dynamic impact response of additively manufactured M350 maraging steel-Al0.5CoCrFeNi1.5 hybrid plates
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1