{"title":"Adaptive control of nonlinear time-varying systems with unknown parameters and model uncertainties","authors":"Zhenwei Ma , Qiufeng Wang","doi":"10.1016/j.ast.2024.109677","DOIUrl":null,"url":null,"abstract":"<div><div>This paper investigates the adaptive control problem for nonlinear time-varying systems with unknown parameters and model uncertainties. A novel class of switching functions is designed, and its construction method is detailed, along with a proof of the continuity of its <span><math><mi>n</mi><mo>−</mo><mn>1</mn></math></span> order derivatives. Two simple examples are provided to illustrate how the proposed congelation of variables method handles unknown high-frequency time-varying parameters in both the feedback and input paths. A new neural network control scheme is then developed, integrating an adaptive neural network controller with a robust controller. The smooth transition between these two controllers is ensured by the novel switching function, which guarantees global system stability. Furthermore, by combining the congelation of variables method with adaptive backstepping, a new adaptive tracking control scheme is proposed. This scheme effectively handles unknown high-frequency time-varying parameters while achieving asymptotic tracking of arbitrary reference signals. Simulation results show that the proposed novel adaptive control method delivers superior control accuracy while reducing energy consumption: it achieves an order of magnitude improvement over the traditional adaptive robust control method and two orders of magnitude improvement over the conventional sliding mode control method.</div></div>","PeriodicalId":50955,"journal":{"name":"Aerospace Science and Technology","volume":"155 ","pages":"Article 109677"},"PeriodicalIF":5.0000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerospace Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S127096382400806X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0
Abstract
This paper investigates the adaptive control problem for nonlinear time-varying systems with unknown parameters and model uncertainties. A novel class of switching functions is designed, and its construction method is detailed, along with a proof of the continuity of its order derivatives. Two simple examples are provided to illustrate how the proposed congelation of variables method handles unknown high-frequency time-varying parameters in both the feedback and input paths. A new neural network control scheme is then developed, integrating an adaptive neural network controller with a robust controller. The smooth transition between these two controllers is ensured by the novel switching function, which guarantees global system stability. Furthermore, by combining the congelation of variables method with adaptive backstepping, a new adaptive tracking control scheme is proposed. This scheme effectively handles unknown high-frequency time-varying parameters while achieving asymptotic tracking of arbitrary reference signals. Simulation results show that the proposed novel adaptive control method delivers superior control accuracy while reducing energy consumption: it achieves an order of magnitude improvement over the traditional adaptive robust control method and two orders of magnitude improvement over the conventional sliding mode control method.
期刊介绍:
Aerospace Science and Technology publishes articles of outstanding scientific quality. Each article is reviewed by two referees. The journal welcomes papers from a wide range of countries. This journal publishes original papers, review articles and short communications related to all fields of aerospace research, fundamental and applied, potential applications of which are clearly related to:
• The design and the manufacture of aircraft, helicopters, missiles, launchers and satellites
• The control of their environment
• The study of various systems they are involved in, as supports or as targets.
Authors are invited to submit papers on new advances in the following topics to aerospace applications:
• Fluid dynamics
• Energetics and propulsion
• Materials and structures
• Flight mechanics
• Navigation, guidance and control
• Acoustics
• Optics
• Electromagnetism and radar
• Signal and image processing
• Information processing
• Data fusion
• Decision aid
• Human behaviour
• Robotics and intelligent systems
• Complex system engineering.
Etc.